Advances in modification and delivery of nucleic acid drugs.
核酸类药物的修饰和递送研究进展.
Chemical modification
Drug delivery system
Gene therapy
Nucleic acid drugs
Review
Journal
Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences
ISSN: 1008-9292
Titre abrégé: Zhejiang Da Xue Xue Bao Yi Xue Ban
Pays: China
ID NLM: 100927946
Informations de publication
Date de publication:
25 Aug 2023
25 Aug 2023
Historique:
medline:
31
8
2023
pubmed:
30
8
2023
entrez:
29
8
2023
Statut:
ppublish
Résumé
Nucleic acid-based drugs, such as RNA and DNA drugs, exert their effects at the genetic level. Currently, widely utilized nucleic acid-based drugs include nucleic acid aptamers, antisense oligonucleotides, mRNA, miRNA, siRNA and saRNA. However, these drugs frequently encounter challenges during clinical application, such as poor stability, weak targeting specificity, and difficulties in traversing physiological barriers. By employing chemical modifications of nucleic acid structures, it is possible to enhance the stability and targeting specificity of certain nucleic acid drugs within the body, thereby improving delivery efficiency and reducing immunogenicity. Moreover, utilizing nucleic acid drug carriers can facilitate the transportation of drugs to lesion sites, thereby aiding efficient intracellular escape and promoting drug efficacy within the body. Currently, commonly employed delivery carriers include virus vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers and extracellular vesicles. Nevertheless, individual modifications or delivery carriers alone are insufficient to overcome numerous obstacles. The integration of nucleic acid chemical modifications with drug delivery systems holds promise for achieving enhanced therapeutic effects. However, this approach also presents increased technical complexity and clinical translation costs. Therefore, the development of nucleic acid drug carriers and nucleic acid chemical modifications that are both practical and simple, while maintaining high efficacy, low toxicity, and precise nucleic acid delivery, has become a prominent research focus in the field of nucleic acid drug development. This review comprehensively summarizes the advancements in nucleic acid-based drug modifica-tions and delivery systems. Additionally, strategies to enhance nucleic acid drug delivery efficiency are discussed, with the aim of providing valuable insights for the translational application of nucleic acid drugs. 核酸类药物是在基因水平上发挥作用的RNA或DNA。目前应用较多的有核酸适配体、反义寡核苷酸、信使RNA、微RNA、小干扰RNA、小激活RNA等。核酸类药物临床应用面临稳定性差、靶向性弱、难以跨越体内屏障等难题。通过核酸化学结构修饰可以提高部分核酸药物在体内的稳定性、靶向性,提高递送效率,同时降低药物的免疫原性;应用核酸类药物载体可以帮助药物到达病灶,有助于核酸类药物实现更高效的内体逃逸,促进药物在体内发挥作用。目前应用较多的递送载体有病毒载体、脂质纳米粒、聚合物纳米载体、无机纳米载体、蛋白载体、外泌体等。目前,单独的修饰或递送载体尚不足以克服众多障碍,将核酸化学结构修饰与药物递送系统相结合有望实现更好的治疗效果,但后者技术难度和临床转化成本也随之增加。针对更加简单实用、低毒高效、精准递送核酸药物载体和核酸化学结构修饰的研发将成为核酸药物研发的热点方向。本文综述了核酸类药物的修饰和递送研究进展,讨论了提高核酸类药物递送效率的对策,以期为核酸类药物的转化应用提供参考。.
Autres résumés
Type: Publisher
(chi)
核酸类药物是在基因水平上发挥作用的RNA或DNA。目前应用较多的有核酸适配体、反义寡核苷酸、信使RNA、微RNA、小干扰RNA、小激活RNA等。核酸类药物临床应用面临稳定性差、靶向性弱、难以跨越体内屏障等难题。通过核酸化学结构修饰可以提高部分核酸药物在体内的稳定性、靶向性,提高递送效率,同时降低药物的免疫原性;应用核酸类药物载体可以帮助药物到达病灶,有助于核酸类药物实现更高效的内体逃逸,促进药物在体内发挥作用。目前应用较多的递送载体有病毒载体、脂质纳米粒、聚合物纳米载体、无机纳米载体、蛋白载体、外泌体等。目前,单独的修饰或递送载体尚不足以克服众多障碍,将核酸化学结构修饰与药物递送系统相结合有望实现更好的治疗效果,但后者技术难度和临床转化成本也随之增加。针对更加简单实用、低毒高效、精准递送核酸药物载体和核酸化学结构修饰的研发将成为核酸药物研发的热点方向。本文综述了核酸类药物的修饰和递送研究进展,讨论了提高核酸类药物递送效率的对策,以期为核酸类药物的转化应用提供参考。.
Identifiants
pubmed: 37643976
pii: 1008-9292(2023)04-0417-12
doi: 10.3724/zdxbyxb-2023-0130
pmc: PMC10495244
pii:
doi:
Substances chimiques
Nucleic Acids
0
RNA, Small Interfering
0
Drug Carriers
0
Types de publication
Review
Journal Article
Langues
eng
chi
Sous-ensembles de citation
IM
Pagination
417-428Références
Nat Cell Biol. 2010 Jan;12(1):19-30; sup pp 1-13
pubmed: 19966785
Biomaterials. 2014 Jul;35(21):5605-18
pubmed: 24736021
NPJ Vaccines. 2017 Oct 19;2:29
pubmed: 29263884
Nat Nanotechnol. 2020 Apr;15(4):313-320
pubmed: 32251383
J Mater Sci Mater Med. 2015 Feb;26(2):101
pubmed: 25655500
Biomed Res Int. 2014;2014:180549
pubmed: 24772414
Lancet. 2010 May 29;375(9729):1896-905
pubmed: 20511019
J Nanobiotechnology. 2022 Jun 14;20(1):279
pubmed: 35701788
Anal Chem. 2017 May 16;89(10):5511-5518
pubmed: 28429595
Sci Adv. 2020 Jun 24;6(26):eaaz6893
pubmed: 32637598
Nucleic Acids Res. 2015 May 19;43(9):4569-78
pubmed: 25855809
Cytotechnology. 2016 Oct;68(5):2125-38
pubmed: 26856590
Materials (Basel). 2019 Jun 21;12(12):
pubmed: 31234290
Mol Ther. 2021 Jul 7;29(7):2219-2226
pubmed: 33992805
J Control Release. 2004 Nov 24;100(2):165-80
pubmed: 15544865
Nat Biotechnol. 2017 Mar;35(3):238-248
pubmed: 28244990
Adv Drug Deliv Rev. 2011 Jan-Feb;63(1-2):24-46
pubmed: 20685224
Molecules. 2018 Nov 02;23(11):
pubmed: 30400134
ACS Nano. 2014 Jun 24;8(6):5574-84
pubmed: 24869928
Biomacromolecules. 2017 Dec 11;18(12):4307-4315
pubmed: 29141136
Mol Ther. 2021 Feb 3;29(2):464-488
pubmed: 33309881
N Engl J Med. 2014 Oct 16;371(16):1507-17
pubmed: 25317870
PLoS One. 2013;8(3):e60034
pubmed: 23527297
Nanomedicine. 2020 Jan;23:102115
pubmed: 31655205
Acc Chem Res. 2011 Oct 18;44(10):925-35
pubmed: 21648430
ACS Nano. 2019 Jan 22;13(1):187-202
pubmed: 30566836
Cell Rep. 2018 Feb 27;22(9):2227-2235
pubmed: 29490262
Pulm Circ. 2018 Jan-Mar;8(1):2045893217750613
pubmed: 29251557
ACS Chem Biol. 2011 Sep 16;6(9):912-9
pubmed: 21667942
Adv Drug Deliv Rev. 2020;156:119-132
pubmed: 32585159
J Control Release. 2018 Aug 10;283:175-189
pubmed: 29883694
J Extracell Vesicles. 2017 Jun 6;6(1):1324730
pubmed: 28717420
J Adv Res. 2019 Jan 18;18:81-93
pubmed: 30828478
Clin Med Insights Pathol. 2016 Sep 14;9(Suppl 1):1-8
pubmed: 27660518
Biomaterials. 2020 Jul;245:119840
pubmed: 32037007
Biochem Pharmacol. 2009 Mar 1;77(5):910-9
pubmed: 19056355
Nat Biomed Eng. 2020 Jan;4(1):69-83
pubmed: 31844155
Adv Sci (Weinh). 2021 Mar 16;8(10):2002787
pubmed: 34026432
J Control Release. 2017 Nov 28;266:8-16
pubmed: 28916446
Nat Biotechnol. 2017 Sep;35(9):845-851
pubmed: 28829437
Nucleic Acids Res. 2017 Nov 2;45(19):10969-10977
pubmed: 28981809
Lancet. 2021 Feb 20;397(10275):671-681
pubmed: 33545094
Nano Lett. 2018 Oct 10;18(10):6449-6454
pubmed: 30211557
J Clin Invest. 2017 Dec 1;127(12):4437-4448
pubmed: 29106386
Life (Basel). 2019 Jul 09;9(3):
pubmed: 31324016
J Infect Dis. 2014 Feb 15;209(4):562-70
pubmed: 23990568
Biotechnol Adv. 2018 Jan - Feb;36(1):328-334
pubmed: 29248680
Drug Discov Today. 2018 Apr;23(4):900-911
pubmed: 29373841
Chembiochem. 2015 Jan 19;16(2):262-7
pubmed: 25487859
Sci Rep. 2016 Feb 16;6:21170
pubmed: 26880047
Small. 2014 Jan 15;10(1):117-26
pubmed: 23696272
Curr Med Chem. 2006;13(12):1371-87
pubmed: 16719783
Nanomedicine. 2020 Jan;23:102094
pubmed: 31669854
Nucleic Acids Res. 2012 May;40(9):4125-36
pubmed: 22253019
Stem Cells. 2004;22(4):531-43
pubmed: 15277699
Nat Nanotechnol. 2019 Dec;14(12):1084-1087
pubmed: 31802031
Gene Ther. 2004 May;11(10):805-10
pubmed: 15042119
Small. 2014 Feb 12;10(3):524-35
pubmed: 24106138
Mol Ther Nucleic Acids. 2017 Mar 17;6:116-132
pubmed: 28325278
J Control Release. 2021 Feb 10;330:907-919
pubmed: 33152393
J Gen Virol. 2000 Nov;81(Pt 11):2573-2604
pubmed: 11038369
Drug Deliv. 2018 Nov;25(1):1516-1525
pubmed: 29968512
Signal Transduct Target Ther. 2020 Jun 19;5(1):101
pubmed: 32561705
Int J Pharm. 2018 Oct 25;550(1-2):100-113
pubmed: 30138707
Sci Adv. 2022 Feb 18;8(7):eabm1418
pubmed: 35171673
Ther Deliv. 2015 Jan;6(1):41-58
pubmed: 25565440
Curr Med Chem. 2020;27(13):2189-2219
pubmed: 30295183
Antiviral Res. 2012 Apr;94(1):80-8
pubmed: 22353544
J Nanobiotechnology. 2012 Dec 02;10:44
pubmed: 23199119
Nat Commun. 2017 Jun 08;8:15594
pubmed: 28593939
Biochim Biophys Acta Biomembr. 2020 Mar 1;1862(3):183159
pubmed: 31857070
Mol Ther Nucleic Acids. 2018 Sep 7;12:530-542
pubmed: 30195789