Metabolic programs of T cell tissue residency empower tumour immunity.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Sep 2023
Historique:
received: 27 06 2022
accepted: 26 07 2023
medline: 8 9 2023
pubmed: 31 8 2023
entrez: 30 8 2023
Statut: ppublish

Résumé

Tissue resident memory CD8

Identifiants

pubmed: 37648857
doi: 10.1038/s41586-023-06483-w
pii: 10.1038/s41586-023-06483-w
doi:

Substances chimiques

Cholesterol 97C5T2UQ7J
Mevalonic Acid S5UOB36OCZ
prenyl diphosphate synthase, subunit 2, human EC 2.5.1.-
SREBF2 protein, human 0
Ubiquinone 1339-63-5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

179-187

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Masopust, D. & Soerens, A. G. Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol. https://doi.org/10.1146/annurev-immunol-042617-053214 (2019).
Park, S. L., Gebhardt, T. & Mackay, L. K. Tissue-resident memory T cells in cancer immunosurveillance. Trends Immunol. 40, 735–747 (2019).
pubmed: 31255505 doi: 10.1016/j.it.2019.06.002
Byrne, A. et al. Tissue-resident memory T cells in breast cancer control and immunotherapy responses. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-020-0333-y (2020).
Konjar, Š. et al. Mitochondria maintain controlled activation state of epithelial-resident T lymphocytes. Sci. Immunol. 3, eaan2543 (2018).
pubmed: 29934344 pmcid: 6690060 doi: 10.1126/sciimmunol.aan2543
Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).
pubmed: 25957682 pmcid: 4426972 doi: 10.1016/j.cell.2015.03.031
Wijeyesinghe, S. et al. Expansible residence decentralizes immune homeostasis. Nature 592, 457–462 (2021).
pubmed: 33731934 doi: 10.1038/s41586-021-03351-3
Soerens, A. G. et al. Functional T cells are capable of supernumerary cell division and longevity. Nature 614, 762–766 (2023).
pubmed: 36653453 doi: 10.1038/s41586-022-05626-9
Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).
pubmed: 19305395 doi: 10.1038/ni.1718
Iijima, N. & Iwasaki, A. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014).
pubmed: 25170048 pmcid: 4254703 doi: 10.1126/science.1257530
Jiang, X. et al. Skin infection generates non-migratory memory CD8
pubmed: 22388819 pmcid: 3437663 doi: 10.1038/nature10851
Teijaro, J. R. et al. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).
pubmed: 22058417 doi: 10.4049/jimmunol.1102243
Ariotti, S. et al. Skin-resident memory CD8
pubmed: 25278612 doi: 10.1126/science.1254803
Schenkel, J. M. et al. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).
pubmed: 25170049 pmcid: 4449618 doi: 10.1126/science.1254536
Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012).
pubmed: 22509047 pmcid: 3344960 doi: 10.1073/pnas.1202288109
Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).
pubmed: 23075848 pmcid: 3499630 doi: 10.1038/nature11522
Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2014).
pubmed: 24006506 pmcid: 3896663 doi: 10.1189/jlb.0313180
Milner, J. J. et al. Runx3 programs CD8
pubmed: 29211713 pmcid: 5747964 doi: 10.1038/nature24993
Nizard, M. et al. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat. Commun. 8, 15221 (2017).
doi: 10.1038/ncomms15221
Malik, B. T. et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol. 2, 6346 (2017).
doi: 10.1126/sciimmunol.aam6346
Ganesan, A. P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017).
pubmed: 28628092 pmcid: 6036910 doi: 10.1038/ni.3775
Djenidi, F. et al. CD8
pubmed: 25725111 doi: 10.4049/jimmunol.1402711
Reina-Campos, M., Scharping, N. E. & Goldrath, A. W. CD8
pubmed: 33981085 pmcid: 8806153 doi: 10.1038/s41577-021-00537-8
Huang, H. et al. In vivo CRISPR screening reveals nutrient signaling processes underpinning CD8
pubmed: 33636132 pmcid: 8101447 doi: 10.1016/j.cell.2021.02.021
Crowl, J. et al. Tissue-resident memory CD8
pubmed: 35761084 pmcid: 10041538 doi: 10.1038/s41590-022-01229-8
Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).
pubmed: 28219080 pmcid: 5509051 doi: 10.1038/nature21379
Milner, J. J. & Goldrath, A. W. Transcriptional programming of tissue-resident memory CD8
pubmed: 29621697 pmcid: 5943164 doi: 10.1016/j.coi.2018.03.017
Frizzell, H. et al. Organ-specific isoform selection of fatty acid-binding proteins in tissue-resident lymphocytes. Sci. Immunol. 5, 9283 (2020).
doi: 10.1126/sciimmunol.aay9283
Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).
pubmed: 31827283 pmcid: 6937596 doi: 10.1038/s41586-019-1821-z
Locke, F. L., Zha, Y., Zheng, Y., Driessens, G. & Gajewski, T. F. Conditional deletion of PTEN in peripheral T cells augments TCR-mediated activation but does not abrogate CD28 dependency or prevent anergy induction. J. Immunol. 191, 1677–1685 (2013).
pubmed: 23851688 doi: 10.4049/jimmunol.1202018
Pauls, S. D. & Marshall, A. J. Regulation of immune cell signaling by SHIP1: a phosphatase, scaffold protein, and potential therapeutic target. Eur. J. Immunol. 47, 932–945 (2017).
pubmed: 28480512 doi: 10.1002/eji.201646795
Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14, 489–499 (2013).
pubmed: 23563690 pmcid: 3652626 doi: 10.1038/ni.2570
Yu, B. et al. Epigenetic landscapes reveal transcription factors that regulate CD8
pubmed: 28288100 pmcid: 5395420 doi: 10.1038/ni.3706
Fernandez-Ruiz, D. et al. Liver-resident memory CD8
pubmed: 27692609 doi: 10.1016/j.immuni.2016.08.011
Shimano, H. & Sato, R. SREBP-regulated lipid metabolism: convergent physiology – divergent pathophysiology. Nat. Rev. Endocrinol. 13, 710–730 (2017).
pubmed: 28849786 doi: 10.1038/nrendo.2017.91
Zeiser, R. Immune modulatory effects of statins. Immunology 154, 69–75 (2018).
pubmed: 29392731 pmcid: 5904709 doi: 10.1111/imm.12902
Sullivan, Z. A. et al. γδ T cells regulate the intestinal response to nutrient sensing. Science 371, eaba8310 (2021).
Menk, A. V. et al. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J. Exp. Med. 215, 1091–1100 (2018).
pubmed: 29511066 pmcid: 5881463 doi: 10.1084/jem.20171068
Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity https://doi.org/10.1016/j.immuni.2016.07.009 (2016).
Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).
Lanterna, C. et al. The administration of drugs inhibiting cholesterol/oxysterol synthesis is safe and increases the efficacy of immunotherapeutic regimens in tumor-bearing mice. Cancer Immunol. Immunother. 65, 1303–1315 (2016).
pubmed: 27520505 doi: 10.1007/s00262-016-1884-8
Shires, J., Theodoridis, E. & Hayday, A. C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).
pubmed: 11567632 doi: 10.1016/S1074-7613(01)00192-3
Fahrer, A. M. et al. Attributes of γδ intraepithelial lymphocytes as suggested by their transcriptional profile. Proc. Natl Acad. Sci. USA 98, 10261–10266 (2001).
pubmed: 11526237 pmcid: 56949 doi: 10.1073/pnas.171320798
Hoytema van Konijnenburg, D. P. et al. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell 171, 783–794 (2017).
pubmed: 28942917 pmcid: 5670000 doi: 10.1016/j.cell.2017.08.046
Passi, S., Stancato, A., Aleo, E., Dmitrieva, A. & Littarru, G. P. Statins lower plasma and lymphocyte ubiquinol/ubiquinone without affecting other antioxidants and PUFA. BioFactors 18, 113–124 (2003).
pubmed: 14695926 doi: 10.1002/biof.5520180213
Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8
pubmed: 34102100 pmcid: 9273026 doi: 10.1016/j.immuni.2021.05.003
Ma, X. et al. Cholesterol induces CD8
pubmed: 31031094 pmcid: 7061417 doi: 10.1016/j.cmet.2019.04.002
O’Connor, A., Quizon, P. M., Albright, J. E., Lin, F. T. & Bennett, B. J. Responsiveness of cardiometabolic-related microbiota to diet is influenced by host genetics. Mamm. Genome 25, 583–599 (2014).
pubmed: 25159725 pmcid: 4239785 doi: 10.1007/s00335-014-9540-0
Anderson, K. G. et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 9, 209–222 (2014).
pubmed: 24385150 pmcid: 4428344 doi: 10.1038/nprot.2014.005
McCausland, M. M. & Crotty, S. Quantitative PCR technique for detecting lymphocytic choriomeningitis virus in vivo. J. Virol. Methods 147, 167–176 (2008).
pubmed: 17920702 doi: 10.1016/j.jviromet.2007.08.025
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
pubmed: 29203879 pmcid: 5715110 doi: 10.1038/s41598-017-17204-5
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 14, 7 (2013).
pubmed: 23323831 pmcid: 3618321 doi: 10.1186/1471-2105-14-7
Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).
pubmed: 25476604 pmcid: 4290824 doi: 10.1186/s13059-014-0554-4
Brinkman, E. K., Chen, T., Amendola, M. & Van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).
pubmed: 25300484 pmcid: 4267669 doi: 10.1093/nar/gku936
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819 pmcid: 6884693 doi: 10.1038/s41592-019-0619-0
van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729 (2018).
pubmed: 29961576 pmcid: 6771278 doi: 10.1016/j.cell.2018.05.061
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
pubmed: 27207943 doi: 10.1093/bioinformatics/btw313
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).
pubmed: 30643263 pmcid: 6340744 doi: 10.1038/s41590-018-0276-y
Andreatta, M. & Carmona, S. J. UCell: robust and scalable single-cell gene signature scoring. Comput. Struct. Biotechnol. J. 19, 3796–3798 (2021).
pubmed: 34285779 pmcid: 8271111 doi: 10.1016/j.csbj.2021.06.043
Kushnareva, Y. et al. Functional analysis of immune signature genes in Th1* memory cells links ISOC1 and pyrimidine metabolism to IFN-γ and IL-17 production. J. Immunol. 206, 1181–1193 (2021).
pubmed: 33547171 doi: 10.4049/jimmunol.2000672
Ye, Q. et al. HORMA domain proteins and a Trip13-like ATPase regulate bacterial cGAS-like enzymes to mediate bacteriophage immunity. Mol. Cell 77, 709–722 (2020).
pubmed: 31932165 pmcid: 7036143 doi: 10.1016/j.molcel.2019.12.009
MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).
pubmed: 20147306 pmcid: 2844992 doi: 10.1093/bioinformatics/btq054
Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).
pubmed: 27102484 doi: 10.1126/science.aad2035
Kurd, N. S. et al. Early precursors and molecular determinants of tissue-resident memory CD8+ T lymphocytes revealed by single-cell RNA sequencing. Sci. Immunol. 5, eaaz6894 (2020).
pubmed: 32414833 pmcid: 7341730 doi: 10.1126/sciimmunol.aaz6894
Boland, B. S. et al. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci. Immunol. 5, eabb4432 (2020).
pubmed: 32826341 pmcid: 7733868 doi: 10.1126/sciimmunol.abb4432
Milner, J. J. et al. Delineation of a molecularly distinct terminally differentiated memory CD8 T cell population. Proc. Natl Acad. Sci. USA 117, 25667–25678 (2020).
pubmed: 32978300 pmcid: 7568335 doi: 10.1073/pnas.2008571117
Trindade, B. C. et al. The cholesterol metabolite 25-hydroxycholesterol restrains the transcriptional regulator SREBP2 and limits intestinal IgA plasma cell differentiation. Immunity 54, 2273–2287 (2021).
pubmed: 34644558 pmcid: 8570345 doi: 10.1016/j.immuni.2021.09.004

Auteurs

Miguel Reina-Campos (M)

School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA.

Maximilian Heeg (M)

School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA.

Kelly Kennewick (K)

Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

Ian T Mathews (IT)

La Jolla Institute for Immunology, La Jolla, CA, USA.
Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.

Giovanni Galletti (G)

School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA.

Vida Luna (V)

School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA.

Quynhanh Nguyen (Q)

School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA.

Hongling Huang (H)

Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.

J Justin Milner (JJ)

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.

Kenneth H Hu (KH)

Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.

Amy Vichaidit (A)

Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

Natalie Santillano (N)

Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

Brigid S Boland (BS)

Department of Medicine, University of California, San Diego, La Jolla, CA, USA.

John T Chang (JT)

Department of Medicine, University of California, San Diego, La Jolla, CA, USA.

Mohit Jain (M)

Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.

Sonia Sharma (S)

La Jolla Institute for Immunology, La Jolla, CA, USA.

Matthew F Krummel (MF)

Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.

Hongbo Chi (H)

Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Steven J Bensinger (SJ)

Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

Ananda W Goldrath (AW)

School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA. agoldrath@ucsd.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH