Metabolic programs of T cell tissue residency empower tumour immunity.
Animals
Humans
Mice
CD8-Positive T-Lymphocytes
/ immunology
Cell Respiration
Cholesterol
/ metabolism
Immunologic Memory
Intestine, Small
/ drug effects
Lymphocytes, Tumor-Infiltrating
/ immunology
Metabolomics
Mevalonic Acid
/ metabolism
Neoplasms
/ immunology
Ubiquinone
/ metabolism
Virus Diseases
/ immunology
Viruses
/ immunology
Mitochondria
/ metabolism
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Sep 2023
Sep 2023
Historique:
received:
27
06
2022
accepted:
26
07
2023
medline:
8
9
2023
pubmed:
31
8
2023
entrez:
30
8
2023
Statut:
ppublish
Résumé
Tissue resident memory CD8
Identifiants
pubmed: 37648857
doi: 10.1038/s41586-023-06483-w
pii: 10.1038/s41586-023-06483-w
doi:
Substances chimiques
Cholesterol
97C5T2UQ7J
Mevalonic Acid
S5UOB36OCZ
prenyl diphosphate synthase, subunit 2, human
EC 2.5.1.-
SREBF2 protein, human
0
Ubiquinone
1339-63-5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
179-187Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Masopust, D. & Soerens, A. G. Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol. https://doi.org/10.1146/annurev-immunol-042617-053214 (2019).
Park, S. L., Gebhardt, T. & Mackay, L. K. Tissue-resident memory T cells in cancer immunosurveillance. Trends Immunol. 40, 735–747 (2019).
pubmed: 31255505
doi: 10.1016/j.it.2019.06.002
Byrne, A. et al. Tissue-resident memory T cells in breast cancer control and immunotherapy responses. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-020-0333-y (2020).
Konjar, Š. et al. Mitochondria maintain controlled activation state of epithelial-resident T lymphocytes. Sci. Immunol. 3, eaan2543 (2018).
pubmed: 29934344
pmcid: 6690060
doi: 10.1126/sciimmunol.aan2543
Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).
pubmed: 25957682
pmcid: 4426972
doi: 10.1016/j.cell.2015.03.031
Wijeyesinghe, S. et al. Expansible residence decentralizes immune homeostasis. Nature 592, 457–462 (2021).
pubmed: 33731934
doi: 10.1038/s41586-021-03351-3
Soerens, A. G. et al. Functional T cells are capable of supernumerary cell division and longevity. Nature 614, 762–766 (2023).
pubmed: 36653453
doi: 10.1038/s41586-022-05626-9
Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).
pubmed: 19305395
doi: 10.1038/ni.1718
Iijima, N. & Iwasaki, A. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014).
pubmed: 25170048
pmcid: 4254703
doi: 10.1126/science.1257530
Jiang, X. et al. Skin infection generates non-migratory memory CD8
pubmed: 22388819
pmcid: 3437663
doi: 10.1038/nature10851
Teijaro, J. R. et al. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).
pubmed: 22058417
doi: 10.4049/jimmunol.1102243
Ariotti, S. et al. Skin-resident memory CD8
pubmed: 25278612
doi: 10.1126/science.1254803
Schenkel, J. M. et al. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).
pubmed: 25170049
pmcid: 4449618
doi: 10.1126/science.1254536
Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012).
pubmed: 22509047
pmcid: 3344960
doi: 10.1073/pnas.1202288109
Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).
pubmed: 23075848
pmcid: 3499630
doi: 10.1038/nature11522
Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2014).
pubmed: 24006506
pmcid: 3896663
doi: 10.1189/jlb.0313180
Milner, J. J. et al. Runx3 programs CD8
pubmed: 29211713
pmcid: 5747964
doi: 10.1038/nature24993
Nizard, M. et al. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat. Commun. 8, 15221 (2017).
doi: 10.1038/ncomms15221
Malik, B. T. et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol. 2, 6346 (2017).
doi: 10.1126/sciimmunol.aam6346
Ganesan, A. P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017).
pubmed: 28628092
pmcid: 6036910
doi: 10.1038/ni.3775
Djenidi, F. et al. CD8
pubmed: 25725111
doi: 10.4049/jimmunol.1402711
Reina-Campos, M., Scharping, N. E. & Goldrath, A. W. CD8
pubmed: 33981085
pmcid: 8806153
doi: 10.1038/s41577-021-00537-8
Huang, H. et al. In vivo CRISPR screening reveals nutrient signaling processes underpinning CD8
pubmed: 33636132
pmcid: 8101447
doi: 10.1016/j.cell.2021.02.021
Crowl, J. et al. Tissue-resident memory CD8
pubmed: 35761084
pmcid: 10041538
doi: 10.1038/s41590-022-01229-8
Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).
pubmed: 28219080
pmcid: 5509051
doi: 10.1038/nature21379
Milner, J. J. & Goldrath, A. W. Transcriptional programming of tissue-resident memory CD8
pubmed: 29621697
pmcid: 5943164
doi: 10.1016/j.coi.2018.03.017
Frizzell, H. et al. Organ-specific isoform selection of fatty acid-binding proteins in tissue-resident lymphocytes. Sci. Immunol. 5, 9283 (2020).
doi: 10.1126/sciimmunol.aay9283
Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).
pubmed: 31827283
pmcid: 6937596
doi: 10.1038/s41586-019-1821-z
Locke, F. L., Zha, Y., Zheng, Y., Driessens, G. & Gajewski, T. F. Conditional deletion of PTEN in peripheral T cells augments TCR-mediated activation but does not abrogate CD28 dependency or prevent anergy induction. J. Immunol. 191, 1677–1685 (2013).
pubmed: 23851688
doi: 10.4049/jimmunol.1202018
Pauls, S. D. & Marshall, A. J. Regulation of immune cell signaling by SHIP1: a phosphatase, scaffold protein, and potential therapeutic target. Eur. J. Immunol. 47, 932–945 (2017).
pubmed: 28480512
doi: 10.1002/eji.201646795
Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14, 489–499 (2013).
pubmed: 23563690
pmcid: 3652626
doi: 10.1038/ni.2570
Yu, B. et al. Epigenetic landscapes reveal transcription factors that regulate CD8
pubmed: 28288100
pmcid: 5395420
doi: 10.1038/ni.3706
Fernandez-Ruiz, D. et al. Liver-resident memory CD8
pubmed: 27692609
doi: 10.1016/j.immuni.2016.08.011
Shimano, H. & Sato, R. SREBP-regulated lipid metabolism: convergent physiology – divergent pathophysiology. Nat. Rev. Endocrinol. 13, 710–730 (2017).
pubmed: 28849786
doi: 10.1038/nrendo.2017.91
Zeiser, R. Immune modulatory effects of statins. Immunology 154, 69–75 (2018).
pubmed: 29392731
pmcid: 5904709
doi: 10.1111/imm.12902
Sullivan, Z. A. et al. γδ T cells regulate the intestinal response to nutrient sensing. Science 371, eaba8310 (2021).
Menk, A. V. et al. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J. Exp. Med. 215, 1091–1100 (2018).
pubmed: 29511066
pmcid: 5881463
doi: 10.1084/jem.20171068
Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity https://doi.org/10.1016/j.immuni.2016.07.009 (2016).
Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).
Lanterna, C. et al. The administration of drugs inhibiting cholesterol/oxysterol synthesis is safe and increases the efficacy of immunotherapeutic regimens in tumor-bearing mice. Cancer Immunol. Immunother. 65, 1303–1315 (2016).
pubmed: 27520505
doi: 10.1007/s00262-016-1884-8
Shires, J., Theodoridis, E. & Hayday, A. C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).
pubmed: 11567632
doi: 10.1016/S1074-7613(01)00192-3
Fahrer, A. M. et al. Attributes of γδ intraepithelial lymphocytes as suggested by their transcriptional profile. Proc. Natl Acad. Sci. USA 98, 10261–10266 (2001).
pubmed: 11526237
pmcid: 56949
doi: 10.1073/pnas.171320798
Hoytema van Konijnenburg, D. P. et al. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell 171, 783–794 (2017).
pubmed: 28942917
pmcid: 5670000
doi: 10.1016/j.cell.2017.08.046
Passi, S., Stancato, A., Aleo, E., Dmitrieva, A. & Littarru, G. P. Statins lower plasma and lymphocyte ubiquinol/ubiquinone without affecting other antioxidants and PUFA. BioFactors 18, 113–124 (2003).
pubmed: 14695926
doi: 10.1002/biof.5520180213
Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8
pubmed: 34102100
pmcid: 9273026
doi: 10.1016/j.immuni.2021.05.003
Ma, X. et al. Cholesterol induces CD8
pubmed: 31031094
pmcid: 7061417
doi: 10.1016/j.cmet.2019.04.002
O’Connor, A., Quizon, P. M., Albright, J. E., Lin, F. T. & Bennett, B. J. Responsiveness of cardiometabolic-related microbiota to diet is influenced by host genetics. Mamm. Genome 25, 583–599 (2014).
pubmed: 25159725
pmcid: 4239785
doi: 10.1007/s00335-014-9540-0
Anderson, K. G. et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 9, 209–222 (2014).
pubmed: 24385150
pmcid: 4428344
doi: 10.1038/nprot.2014.005
McCausland, M. M. & Crotty, S. Quantitative PCR technique for detecting lymphocytic choriomeningitis virus in vivo. J. Virol. Methods 147, 167–176 (2008).
pubmed: 17920702
doi: 10.1016/j.jviromet.2007.08.025
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
pubmed: 29203879
pmcid: 5715110
doi: 10.1038/s41598-017-17204-5
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 14, 7 (2013).
pubmed: 23323831
pmcid: 3618321
doi: 10.1186/1471-2105-14-7
Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).
pubmed: 25476604
pmcid: 4290824
doi: 10.1186/s13059-014-0554-4
Brinkman, E. K., Chen, T., Amendola, M. & Van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).
pubmed: 25300484
pmcid: 4267669
doi: 10.1093/nar/gku936
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819
pmcid: 6884693
doi: 10.1038/s41592-019-0619-0
van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729 (2018).
pubmed: 29961576
pmcid: 6771278
doi: 10.1016/j.cell.2018.05.061
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
pubmed: 27207943
doi: 10.1093/bioinformatics/btw313
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).
pubmed: 30643263
pmcid: 6340744
doi: 10.1038/s41590-018-0276-y
Andreatta, M. & Carmona, S. J. UCell: robust and scalable single-cell gene signature scoring. Comput. Struct. Biotechnol. J. 19, 3796–3798 (2021).
pubmed: 34285779
pmcid: 8271111
doi: 10.1016/j.csbj.2021.06.043
Kushnareva, Y. et al. Functional analysis of immune signature genes in Th1* memory cells links ISOC1 and pyrimidine metabolism to IFN-γ and IL-17 production. J. Immunol. 206, 1181–1193 (2021).
pubmed: 33547171
doi: 10.4049/jimmunol.2000672
Ye, Q. et al. HORMA domain proteins and a Trip13-like ATPase regulate bacterial cGAS-like enzymes to mediate bacteriophage immunity. Mol. Cell 77, 709–722 (2020).
pubmed: 31932165
pmcid: 7036143
doi: 10.1016/j.molcel.2019.12.009
MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).
pubmed: 20147306
pmcid: 2844992
doi: 10.1093/bioinformatics/btq054
Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).
pubmed: 27102484
doi: 10.1126/science.aad2035
Kurd, N. S. et al. Early precursors and molecular determinants of tissue-resident memory CD8+ T lymphocytes revealed by single-cell RNA sequencing. Sci. Immunol. 5, eaaz6894 (2020).
pubmed: 32414833
pmcid: 7341730
doi: 10.1126/sciimmunol.aaz6894
Boland, B. S. et al. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci. Immunol. 5, eabb4432 (2020).
pubmed: 32826341
pmcid: 7733868
doi: 10.1126/sciimmunol.abb4432
Milner, J. J. et al. Delineation of a molecularly distinct terminally differentiated memory CD8 T cell population. Proc. Natl Acad. Sci. USA 117, 25667–25678 (2020).
pubmed: 32978300
pmcid: 7568335
doi: 10.1073/pnas.2008571117
Trindade, B. C. et al. The cholesterol metabolite 25-hydroxycholesterol restrains the transcriptional regulator SREBP2 and limits intestinal IgA plasma cell differentiation. Immunity 54, 2273–2287 (2021).
pubmed: 34644558
pmcid: 8570345
doi: 10.1016/j.immuni.2021.09.004