A DNA adenine demethylase impairs PRC2-mediated repression of genes marked by a specific chromatin signature.


Journal

Genome biology
ISSN: 1474-760X
Titre abrégé: Genome Biol
Pays: England
ID NLM: 100960660

Informations de publication

Date de publication:
30 08 2023
Historique:
received: 16 02 2023
accepted: 21 08 2023
medline: 1 9 2023
pubmed: 31 8 2023
entrez: 30 8 2023
Statut: epublish

Résumé

The Fe (II)- and α-ketoglutarate-dependent AlkB family dioxygenases are implicated in nucleotide demethylation. AlkB homolog1 (ALKBH1) is shown to demethylate DNA adenine methylation (6mA) preferentially from single-stranded or unpaired DNA, while its demethylase activity and function in the chromatin context are unclear. Here, we find that loss-of-function of the rice ALKBH1 gene leads to increased 6mA in the R-loop regions of the genome but has a limited effect on the overall 6mA level. However, in the context of mixed tissues, rather than on individual loci, the ALKBH1 mutation or overexpression mainly affects the expression of genes with a specific combination of chromatin modifications in the body region marked with H3K4me3 and H3K27me3 but depleted of DNA CG methylation. In the similar context of mixed tissues, further analysis reveals that the ALKBH1 protein preferentially binds to genes marked by the chromatin signature and has a function to maintain a high H3K4me3/H3K27me3 ratio by impairing the binding of Polycomb repressive complex 2 (PRC2) to the targets, which is required for both the basal and stress-induced expression of the genes. Our findings unravel a function of ALKBH1 to control the balance between the antagonistic histone methylations for gene activity and provide insight into the regulatory mechanism of PRC2-mediated H3K27me3 deposition within the gene body region.

Sections du résumé

BACKGROUND
The Fe (II)- and α-ketoglutarate-dependent AlkB family dioxygenases are implicated in nucleotide demethylation. AlkB homolog1 (ALKBH1) is shown to demethylate DNA adenine methylation (6mA) preferentially from single-stranded or unpaired DNA, while its demethylase activity and function in the chromatin context are unclear.
RESULTS
Here, we find that loss-of-function of the rice ALKBH1 gene leads to increased 6mA in the R-loop regions of the genome but has a limited effect on the overall 6mA level. However, in the context of mixed tissues, rather than on individual loci, the ALKBH1 mutation or overexpression mainly affects the expression of genes with a specific combination of chromatin modifications in the body region marked with H3K4me3 and H3K27me3 but depleted of DNA CG methylation. In the similar context of mixed tissues, further analysis reveals that the ALKBH1 protein preferentially binds to genes marked by the chromatin signature and has a function to maintain a high H3K4me3/H3K27me3 ratio by impairing the binding of Polycomb repressive complex 2 (PRC2) to the targets, which is required for both the basal and stress-induced expression of the genes.
CONCLUSION
Our findings unravel a function of ALKBH1 to control the balance between the antagonistic histone methylations for gene activity and provide insight into the regulatory mechanism of PRC2-mediated H3K27me3 deposition within the gene body region.

Identifiants

pubmed: 37649077
doi: 10.1186/s13059-023-03042-4
pii: 10.1186/s13059-023-03042-4
pmc: PMC10469495
doi:

Substances chimiques

AlkB Homolog 1, Histone H2a Dioxygenase EC 1.14.11.33
Polycomb Repressive Complex 2 EC 2.1.1.43
Plant Proteins 0
Histones 0
Chromatin 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

198

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

Nature. 2020 Jul;583(7817):625-630
pubmed: 32669713
Angew Chem Int Ed Engl. 2017 Sep 4;56(37):11268-11271
pubmed: 28371147
Nature. 2007 Aug 9;448(7154):714-7
pubmed: 17687327
Mol Cell. 2018 Jul 19;71(2):306-318.e7
pubmed: 30017583
Mol Cell. 2018 Sep 6;71(5):848-857.e6
pubmed: 30078725
Curr Opin Plant Biol. 2011 Apr;14(2):123-9
pubmed: 21330185
Cell. 2017 Sep 21;171(1):34-57
pubmed: 28938122
Cell Res. 2020 Mar;30(3):197-210
pubmed: 32051560
Nat Commun. 2020 May 27;11(1):2658
pubmed: 32461553
Nat Genet. 2015 Jul;47(7):827-33
pubmed: 25985140
Genome Biol. 2023 Aug 30;24(1):198
pubmed: 37649077
Plant Cell. 2021 Dec 3;33(12):3721-3742
pubmed: 34498077
J Biol Chem. 2015 Aug 21;290(34):20734-20742
pubmed: 26152727
Plant J. 2011 Mar;65(6):872-81
pubmed: 21276103
Genomics. 2014 Nov;104(5):324-33
pubmed: 25173569
Genome Biol. 2009;10(6):R62
pubmed: 19508735
J Plant Physiol. 2007 Aug;164(8):969-79
pubmed: 16919842
Mol Plant. 2018 Dec 3;11(12):1492-1508
pubmed: 30448535
Nat Plants. 2017 Sep;3(9):704-714
pubmed: 28848233
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
Nat Commun. 2020 Apr 14;11(1):1781
pubmed: 32286294
Science. 2022 Feb 4;375(6580):515-522
pubmed: 35113693
Nature. 2012 Jan 04;481(7381):389-93
pubmed: 22217937
Plant Cell. 2010 Jan;22(1):17-33
pubmed: 20086188
Genome Res. 2019 Aug;29(8):1287-1297
pubmed: 31262943
Genome Biol. 2014;15(12):550
pubmed: 25516281
Plant Sci. 2019 Jul;284:48-56
pubmed: 31084878
Nat Struct Mol Biol. 2017 Jun 6;24(6):503-506
pubmed: 28586322
Nat Biotechnol. 2019 Aug;37(8):907-915
pubmed: 31375807
Mol Cell. 2019 Jun 20;74(6):1138-1147.e6
pubmed: 30982744
PLoS Genet. 2007 Jun;3(6):e86
pubmed: 17542647
Cell. 2015 May 7;161(4):879-892
pubmed: 25936837
Nucleic Acids Res. 2017 Nov 16;45(20):11594-11606
pubmed: 29036602
Nature. 2002 Sep 12;419(6903):178-82
pubmed: 12226668
Stem Cells. 2012 Dec;30(12):2672-82
pubmed: 22961808
Nature. 2002 Sep 12;419(6903):174-8
pubmed: 12226667
Dev Cell. 2018 May 7;45(3):406-416.e3
pubmed: 29656930
Mol Cell. 2019 Mar 7;73(5):930-945.e4
pubmed: 30709709
PLoS Genet. 2008 Oct;4(10):e1000242
pubmed: 18974828
PLoS Genet. 2017 Jul 31;13(7):e1006939
pubmed: 28759577
Genome Biol. 2017 May 1;18(1):65
pubmed: 28457232
Nat Plants. 2019 Dec;5(12):1250-1259
pubmed: 31740772
Genes Dev. 2012 Aug 1;26(15):1714-28
pubmed: 22855832
Biochim Biophys Acta Gene Regul Mech. 2018 Jul 30;:
pubmed: 30071347
Mol Cell. 2019 Apr 4;74(1):8-18
pubmed: 30951652
Plant Cell. 2013 Nov;25(11):4725-36
pubmed: 24280387
Nat Plants. 2018 Aug;4(8):554-563
pubmed: 30061746
Plant Cell. 2022 Jul 30;34(8):2969-2988
pubmed: 35512211
PLoS Genet. 2013 Nov;9(11):e1003946
pubmed: 24244201
Plant Physiol. 2020 Jul;183(3):1035-1046
pubmed: 32439720
Genome Biol. 2008;9(9):R137
pubmed: 18798982
Cell. 2016 Oct 20;167(3):816-828.e16
pubmed: 27745969
Elife. 2016 Jul 29;5:
pubmed: 27472897
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5773-8
pubmed: 22451926
Sci Adv. 2020 Mar 18;6(12):eaay3335
pubmed: 32206710
Nat Genet. 2017 Oct;49(10):1546-1552
pubmed: 28825728
Plant Mol Biol. 2012 Oct;80(3):337-50
pubmed: 22930448
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W187-91
pubmed: 24799436
Nature. 2016 Apr 21;532(7599):329-33
pubmed: 27027282
Nat Rev Genet. 2022 Jul;23(7):411-428
pubmed: 35256817
Dev Dyn. 2008 Feb;237(2):316-27
pubmed: 18163532
Plant Cell. 2015 May;27(5):1428-44
pubmed: 25957386
J Biol Chem. 2008 Sep 5;283(36):25046-56
pubmed: 18603530
Biochem J. 2013 Jun 15;452(3):509-18
pubmed: 23577621
Plant Physiol. 2021 Nov 3;187(3):1746-1761
pubmed: 34618083
Nat Commun. 2016 Oct 07;7:13052
pubmed: 27713410
Cell. 2015 May 7;161(4):868-78
pubmed: 25936839
Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):9111-6
pubmed: 27457936
Cell. 2015 May 7;161(4):893-906
pubmed: 25936838
Plant Physiol. 2016 Jul;171(3):2041-54
pubmed: 27208249
Cell. 2018 Nov 15;175(5):1228-1243.e20
pubmed: 30392959
PLoS One. 2010 Nov 03;5(11):e13827
pubmed: 21072209
PLoS One. 2012;7(1):e30588
pubmed: 22291995

Auteurs

Qingxiao Jia (Q)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Xinran Zhang (X)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Qian Liu (Q)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Junjie Li (J)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Wentao Wang (W)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Xuan Ma (X)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Bo Zhu (B)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Sheng Li (S)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Shicheng Gong (S)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Jingjing Tian (J)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Meng Yuan (M)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Yu Zhao (Y)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Dao-Xiu Zhou (DX)

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China. dao-xiu.zhou@universite-paris-saclay.fr.
Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405, Orsay, France. dao-xiu.zhou@universite-paris-saclay.fr.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female

Classifications MeSH