Missing pieces of the pituitary puzzle: participation of extra-adenohypophyseal placode-lineage cells in the adult pituitary gland.
Neural crest cell
Pituitary
S100β
SOX2
Stem cell
Journal
Cell and tissue research
ISSN: 1432-0878
Titre abrégé: Cell Tissue Res
Pays: Germany
ID NLM: 0417625
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
27
03
2023
accepted:
14
08
2023
medline:
6
12
2023
pubmed:
31
8
2023
entrez:
31
8
2023
Statut:
ppublish
Résumé
The pituitary gland is a major endocrine tissue composing of two distinct entities, the adenohypophysis (anterior pituitary, cranial placode origin) and the neurohypophysis (posterior pituitary, neural ectoderm origin), and plays important roles in maintaining vital homeostasis. This tissue is maintained by a slow, consistent cell-renewal system of adult stem/progenitor cells. Recent accumulating evidence shows that neural crest-, head mesenchyme-, and endoderm lineage cells invade during pituitary development and contribute to the maintenance of the adult pituitary gland. Based on these novel observations, this article discusses whether these lineage cells are involved in pituitary organogenesis, maintenance, regeneration, dysplasia, or tumors.
Identifiants
pubmed: 37650920
doi: 10.1007/s00441-023-03829-8
pii: 10.1007/s00441-023-03829-8
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
487-496Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Al Madhoun A, Ali H, Alkandari S, Atizado V, Akhter N, Al-Mulla F, Atari M (2016) Defined three-dimensional culture conditions mediate efficient induction of definitive endoderm lineage from human umbilical cord Wharton’s jelly mesenchymal stem cells. Stem Cell Res Ther 7:165
pubmed: 27852316
pmcid: 5111269
doi: 10.1186/s13287-016-0426-9
Allaerts W, Vankelecom H (2005) History and perspectives of pituitary folliculo-stellate cell research. Eur J Endocrinol 153:1–12
pubmed: 15994739
doi: 10.1530/eje.1.01949
Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, Gaston-Massuet C, Mollard P, Jacques TS, Le Tissier P, Dattani MT, Pevny LH, Martinez-Barbera JP (2013) Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13:433–445
pubmed: 24094324
doi: 10.1016/j.stem.2013.07.004
Aquino JB, Hjerling-Leffler J, Koltzenburg M, Edlund T, Villar MJ, Ernfors P (2006) In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. Exp Neurol 198:438–449
pubmed: 16442526
doi: 10.1016/j.expneurol.2005.12.015
Atwell WJ (1918) The development of the hypophysis cerebri of the rabbit. Am J Anat 24:271–337
doi: 10.1002/aja.1000240302
Betters E, Liu Y, Kjaeldgaard A, Sundstrom E, Garcia-Castro MI (2010) Analysis of early human neural crest development. Dev Biol 344:578–592
pubmed: 20478300
pmcid: 2927129
doi: 10.1016/j.ydbio.2010.05.012
Cerrizuela S, Vega-Lopez GA, Aybar MJ (2020) The role of teratogens in neural crest development. Birth Defects Res 112:584–632
pubmed: 31926062
doi: 10.1002/bdr2.1644
Chen J, Gremeaux L, Fu Q, Liekens D, Van Laere S, Vankelecom H (2009) Pituitary progenitor cells tracked down by side population dissection. Stem Cells 27:1182–1195
pubmed: 19418455
doi: 10.1002/stem.51
Chen M, Kato T, Higuchi M, Yoshida S, Yako H, Kanno N, Kato Y (2013) Coxsackievirus and adenovirus receptor-positive cells compose the putative stem/progenitor cell niches in the marginal cell layer and parenchyma of the rat anterior pituitary. Cell Tissue Res 354:823–836
pubmed: 24057874
doi: 10.1007/s00441-013-1713-8
Choi E, Kraus MR-C, Lemaire LA, Yoshimoto M, Vemula S, Potter LA, Manduchi E, Stoeckert CJ, Jr., Grapin-Botton A, Magnuson MA (2012) Dual lineage-specific expression of Sox17 during mouse embryogenesis. Stem Cells 30
Couly GF, Le Douarin NM (1985) Mapping of the early neural primordium in quail-chick chimeras. I. Developmental relationships between placodes, facial ectoderm, and prosencephalon. Dev Biol 110:422–439
pubmed: 4018406
doi: 10.1016/0012-1606(85)90101-0
Couly GF, Le Douarin NM (1987) Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities. Dev Biol 120:198–214
pubmed: 3817289
doi: 10.1016/0012-1606(87)90118-7
Daikoku S, Kawano H, Abe K, Yoshinaga K (1981) Topographical appearance of adenohypophysial cells with special reference to the development of the portal system. Arch Histol Jpn 44:103–116
pubmed: 6797381
doi: 10.1679/aohc1950.44.103
Dasen JS, Barbera J-PM, Herman TS, O’Connell S, Olson L, Ju B, Tollkuhn J, Baek SH, Rose DW, Rosenfeld MG (2001) Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev 15:3193–3207
pubmed: 11731482
pmcid: 312840
doi: 10.1101/gad.932601
Davis SW, Mortensen AH, Keisler JL, Zacharias AL, Gage PJ, Yamamura K, Camper SA (2016) beta-catenin is required in the neural crest and mesencephalon for pituitary gland organogenesis. BMC Dev Biol 16:16
pubmed: 27184910
pmcid: 4868042
doi: 10.1186/s12861-016-0118-9
Debbache J, Parfejevs V, Sommer L (2018) Cre-driver lines used for genetic fate mapping of neural crest cells in the mouse: An overview. Genesis 56:e23105
pubmed: 29673028
pmcid: 6099459
doi: 10.1002/dvg.23105
Del Valle L, Khalili K (2021) Induction of brain tumors by the archetype strain of human neurotropic JCPyV in a transgenic mouse model. Viruses 13:162
pubmed: 33499370
pmcid: 7911272
doi: 10.3390/v13020162
Devnath S, Inoue K (2008) An insight to pituitary folliculo-stellate cells. J Neuroendocrinol 20:687–691
pubmed: 18601690
doi: 10.1111/j.1365-2826.2008.01716.x
Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26:148–165
pubmed: 15711057
doi: 10.1159/000082134
Etchevers H, Vincent C, Couly G (2001a) Neural crest and pituitary development. Hypothalamic-pituitary Development Genetic and Clinical Aspects 4:13–29
Etchevers HC, Vincent C, Le Douarin NM, Couly GF (2001b) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128:1059–1068
pubmed: 11245571
doi: 10.1242/dev.128.7.1059
Fabian P, Tseng K-C, Smeeton J, Lancman JJ, Dong PDS, Cerny R, Crump JG (2020) Lineage analysis reveals an endodermal contribution to the vertebrate pituitary. Science 370:463–467
pubmed: 33093109
pmcid: 8021009
doi: 10.1126/science.aba4767
Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson IC (2008) SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci USA 105:2907–2912
pubmed: 18287078
pmcid: 2268558
doi: 10.1073/pnas.0707886105
Fujiwara K, Tsukada T, Horiguchi K, Fujiwara Y, Takemoto K, Nio-Kobayashi J, Ohno N, Inoue K (2020) Aldolase C is a novel molecular marker for folliculo-stellate cells in rodent pituitary. Cell Tissue Res 381:273–284
pubmed: 32418131
doi: 10.1007/s00441-020-03200-1
Fujiwara S, Hoshikawa S, Ueno T, Hirata M, Saito T, Ikeda T, Kawaguchi H, Nakamura K, Tanaka S, Ogata T (2014) SOX10 transactivates S100B to suppress Schwann cell proliferation and to promote myelination. PLoS ONE 9:e115400
pubmed: 25536222
pmcid: 4275212
doi: 10.1371/journal.pone.0115400
Furlan A, Adameyko I (2018) Schwann cell precursor: a neural crest cell in disguise? Dev Biol 444:S25–S35
pubmed: 29454705
doi: 10.1016/j.ydbio.2018.02.008
Gammil SL, Weichert R (1973) Common origin for all neuroendocrine tumors. Acta Radiol Ther Phys Biol 12:321–326
doi: 10.3109/02841867309131097
Gleiberman AS, Fedtsova NG, Rosenfeld MG (1999) Tissue interactions in the induction of anterior pituitary: role of the ventral diencephalon, mesenchyme, and notochord. Dev Biol 213:340–353
pubmed: 10479452
doi: 10.1006/dbio.1999.9386
Gremeaux L, Fu Q, Chen J, Vankelecom H (2012) Activated phenotype of the pituitary stem/progenitor cell compartment during the early-postnatal maturation phase of the gland. Stem Cells Dev 21:801–813
pubmed: 21970375
doi: 10.1089/scd.2011.0496
Hall BK (2000) The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evol Dev 2:3–5
pubmed: 11256415
doi: 10.1046/j.1525-142x.2000.00032.x
Horiguchi K, Yako H, Yoshida S, Fujiwara K, Tsukada T, Kanno N, Ueharu H, Nishihara H, Kato T, Yashiro T, Kato Y (2016) S100β-positive cells of mesenchymal origin reside in the anterior lobe of the embryonic pituitary gland. PLoS ONE 11:e0163981
pubmed: 27695124
pmcid: 5047643
doi: 10.1371/journal.pone.0163981
Itakura E, Odaira K, Yokoyama K, Osuna M, Hara T, Inoue K (2007) Generation of transgenic rats expressing green fluorescent protein in S-100beta-producing pituitary folliculo-stellate cells and brain astrocytes. Endocrinology 148:1518–1523
pubmed: 17234709
doi: 10.1210/en.2006-1390
Jacob C (2015) Transcriptional control of neural crest specification into peripheral glia. Glia 63:1883–1896
pubmed: 25752517
doi: 10.1002/glia.22816
Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594:3521–3531
pubmed: 26864683
pmcid: 4929314
doi: 10.1113/JP270874
Jessen KR, Mirsky R (2019) Schwann cell precursors; Multipotent glial cells in embryonic nerves. Front Mol Neurosci 12
Johnson MD, Fan X, Bourne P, Walters D (2007) Neuronal differentiation and expression of neural epitopes in pituitary adenomas. J Histochem Cytochem 55:1265–1271
pubmed: 17875653
doi: 10.1369/jhc.7A7311.2007
Kasai T, Suga H, Sakakibara M, Ozone C, Matsumoto R, Kano M, Mitsumoto K, Ogawa K, Kodani Y, Nagasaki H, Inoshita N, Sugiyama M, Onoue T, Tsunekawa T, Ito Y, Takagi H, Hagiwara D, Iwama S, Goto M, Banno R, Takahashi J, Arima H (2020) Hypothalamic contribution to pituitary functions is recapitulated in vitro using 3D-cultured human ips cells. Cell Rep 30(18–24):e15
Kato Y, Yoshida S, Kato T (2021) New insights into the role and origin of pituitary S100β-positive cells. Cell Tissue Res 386:227–237
pubmed: 34550453
doi: 10.1007/s00441-021-03523-7
Kawamura K, Kikuyama S (1998) Morphogenesis of the hypothalamus and hypophysis: their association, dissociation and reassociation before and after “Rathke.” Arch Histol Cytol 61:189–198
pubmed: 9756096
doi: 10.1679/aohc.61.189
Kelberman D, Rizzoti K, Lovell-Badge R, Robinson IC, Dattani MT (2009) Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 30:790–829
pubmed: 19837867
pmcid: 2806371
doi: 10.1210/er.2009-0008
Kioussi C, Carriere C, Rosenfeld MG (1999) A model for the development of the hypothalamic-pituitary axis: transcribing the hypophysis. Mech Dev 81:23–35
pubmed: 10330482
doi: 10.1016/S0925-4773(98)00229-9
Kouki T, Imai H, Aoto K, Eto K, Shioda S, Kawamura K, Kikuyama S (2001) Developmental origin of the rat adenohypophysis prior to the formation of Rathke’s pouch. Development 128:959–963
pubmed: 11222149
doi: 10.1242/dev.128.6.959
Laporte E, Hermans F, De Vriendt S, Vennekens A, Lambrechts D, Nys C, Cox B, Vankelecom H (2022) Decoding the activated stem cell phenotype of the neonatally maturing pituitary. Elife 11:e75742
pubmed: 35699412
pmcid: 9333987
doi: 10.7554/eLife.75742
Le Douarin NM, Creuzet S, Couly G, Dupin E (2004) Neural crest cell plasticity and its limits. Development 131:4637–4650
pubmed: 15358668
doi: 10.1242/dev.01350
Iida H, Furukawa Y, Teramoto M, Suzuki H, Takemoto T, Uchikawa M, Kondoh H (2020) Sox2 gene regulation via the D1 enhancer in embryonic neural tube and neural crest by the combined action of SOX2 and ZIC2. Genes Cells 25:242–256
Motohashi T, Kitagawa D, Watanabe N, Wakaoka T, Kunisada T (2014) Neural crest-derived cells sustain their multipotency even after entry into their target tissues. Dev Dyn 243:368–380
pubmed: 24273191
doi: 10.1002/dvdy.24072
Nitzan E, Krispin S, Pfaltzgraff ER, Klar A, Labosky PA, Kalcheim C (2013) A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells. Development 140:2269–2279
pubmed: 23615280
pmcid: 3653553
doi: 10.1242/dev.093294
Novello M, Gessi M, Doglietto F, Anile C, Lauriola L, Coli A (2017) Characteristics of ganglion cells in pituitary gangliocytomas. Neuropathology 37:64–68
pubmed: 27400662
doi: 10.1111/neup.12322
Paratore C, Goerich DE, Suter U, Wegner M, Sommer L (2001) Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development 128:3949–3961
pubmed: 11641219
doi: 10.1242/dev.128.20.3949
Parfejevs V, Antunes AT, Sommer L (2018) Injury and stress responses of adult neural crest-derived cells. Dev Biol 444:S356–S365
pubmed: 29778801
doi: 10.1016/j.ydbio.2018.05.011
Perera SN, Kerosuo L (2021) On the road again: Establishment and maintenance of stemness in the neural crest from embryo to adulthood. Stem Cells 39:7–25
pubmed: 33017496
doi: 10.1002/stem.3283
Pierret C, Spears K, Maruniak JA, Kirk MD (2006) Neural crest as the source of adult stem cells. Stem Cells Dev 15:286–291
pubmed: 16646675
doi: 10.1089/scd.2006.15.286
Rizzoti K (2015) Genetic regulation of murine pituitary development. J Mol Endocrinol 54:R55–73
pubmed: 25587054
pmcid: 4335376
doi: 10.1530/JME-14-0237
Roose H, Cox B, Boretto M, Gysemans C, Vennekens A, Vankelecom H (2017) Major depletion of SOX2(+) stem cells in the adult pituitary is not restored which does not affect hormonal cell homeostasis and remodelling. Sci Rep 7:16940
pubmed: 29208952
pmcid: 5717068
doi: 10.1038/s41598-017-16796-2
Sakata K, Fujimori K, Komaki S, Furuta T, Sugita Y, Ashida K, Nomura M, Morioka M (2020) Pituitary gangliocytoma producing TSH and TRH: A review of “Gangliocytomas of the sellar region.” J Clin Endocrinol Metab 105:3109–3121
pubmed: 32706866
pmcid: 7451506
doi: 10.1210/clinem/dgaa474
Salz L, Driskell RR (2017) The Sox2: GFP+/- knock-in mouse model does not faithfully recapitulate Sox2 expression in skin. Exp Dermatol 26:1146–1148
pubmed: 28636810
doi: 10.1111/exd.13396
Sánchez-Arrones L, Ferrán JL, Hidalgo-Sanchez M, Puelles L (2015) Origin and early development of the chicken adenohypophysis. Front Neuroanat 9
Schlosser G (2006) Induction and specification of cranial placodes. Dev Biol 294:303–351
pubmed: 16677629
doi: 10.1016/j.ydbio.2006.03.009
Schlosser G (2008) Do vertebrate neural crest and cranial placodes have a common evolutionary origin? BioEssays 30:659–672
pubmed: 18536035
doi: 10.1002/bies.20775
Seabrook AJ, Harris JE, Velosa SB, Kim E, McInerney-Leo AM, Dwight T, Hockings JI, Hockings NG, Kirk J, Leo PJ, Love AJ, Luxford C, Marshall M, Mete O, Pennisi DJ, Brown MA, Gill AJ, Hockings GI, Clifton-Bligh RJ, Duncan EL (2020) Multiple endocrine tumors associated with germline MAX mutations: Multiple endocrine neoplasia type 5? J Clin Endocrinol Metab 106:e1163–e1182
doi: 10.1210/clinem/dgaa957
Solovieva T, Bronner M (2021) Reprint of: Schwann cell precursors: Where they come from and where they go. Cells Dev 168:203729
pubmed: 34456178
doi: 10.1016/j.cdev.2021.203729
Song K, Wang Y, Sassoon D (1992) Expression of Hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature 360:477–481
pubmed: 1360150
doi: 10.1038/360477a0
Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O’Connell SM, Gukovsky I, Carriere C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, Andersen B, Beamer WG, Rosenfeld MG (1996) Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 384:327–333
pubmed: 8934515
doi: 10.1038/384327a0
Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, Takata N, Wataya T, Muguruma K, Miyoshi H, Yonemura S, Oiso Y, Sasai Y (2011) Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480:57–62
pubmed: 22080957
doi: 10.1038/nature10637
Suzuki J, Yoshizaki K, Kobayashi T, Osumi N (2013) Neural crest-derived horizontal basal cells as tissue stem cells in the adult olfactory epithelium. Neurosci Res 75:112–120
pubmed: 23228673
doi: 10.1016/j.neures.2012.11.005
Takagi H, Nagashima K, Inoue M, Sakata I, Sakai T (2008) Detailed analysis of formation of chicken pituitary primordium in early embryonic development. Cell Tissue Res 333:417–426
pubmed: 18584208
doi: 10.1007/s00441-008-0647-z
Trouillas J, Jaffrain-Rea M-L, Vasiljevic A, Raverot G, Roncaroli F, Villa C (2020) How to classify pituitary neuroendocrine tumors (PitNET)s in 2020. Cancers 12:514
pubmed: 32098443
pmcid: 7072139
doi: 10.3390/cancers12020514
Ueharu H, Yoshida S, Kanno N, Horiguchi K, Nishimura N, Kato T, Kato Y (2018) SOX10-positive cells emerge in the rat pituitary gland during late embryogenesis and start to express S100beta. Cell Tissue Res 372:77–90
pubmed: 29130118
doi: 10.1007/s00441-017-2724-7
Ueharu H, Yoshida S, Kikkawa T, Kanno N, Higuchi M, Kato T, Osumi N, Kato Y (2017) Gene tracing analysis reveals the contribution of neural crest-derived cells in pituitary development. J Anat 230:373–380
pubmed: 28026856
doi: 10.1111/joa.12572
Vankelecom H (2007) Non-hormonal cell types in the pituitary candidating for stem cell. Semin Cell Dev Biol 18:559–570
Vankelecom H, Chen J (2014) Pituitary stem cells: Where do we stand? Mol Cell Endocrinol 385:2–17
pubmed: 23994027
doi: 10.1016/j.mce.2013.08.018
Vankelecom H, Gremeaux L (2010) Stem cells in the pituitary gland: a burgeoning field. Gen Comp Endocrinol 166:478–488
pubmed: 19917287
doi: 10.1016/j.ygcen.2009.11.007
Vega-Lopez GA, Cerrizuela S, Tribulo C, Aybar MJ (2018) Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 444(Suppl 1):S110–S143
pubmed: 29802835
doi: 10.1016/j.ydbio.2018.05.013
Widera D, Heimann P, Zander C, Imielski Y, Heidbreder M, Heilemann M, Kaltschmidt C, Kaltschmidt B (2011) Schwann cells can be reprogrammed to multipotency by culture. Stem Cells Dev 20:2053–2064
pubmed: 21466279
pmcid: 3225064
doi: 10.1089/scd.2010.0525
Yoshida S, Kato T, Chen M, Higuchi M, Ueharu H, Nishimura N, Kato Y (2015) Localization of juxtacrine factor ephrin-B2 in pituitary stem/progenitor cell niches throughout life. Cell Tissue Res 359:755–766
pubmed: 25480420
doi: 10.1007/s00441-014-2054-y
Yoshida S, Kato T, Kato Y (2016a) EMT Involved in migration of stem/progenitor cells for pituitary development and regeneration. J Clin Med 5:43
pubmed: 27058562
pmcid: 4850466
doi: 10.3390/jcm5040043
Yoshida S, Kato T, Susa T, Cai L-Y, Nakayama M, Kato Y (2009) PROP1 coexists with SOX2 and induces PIT1-commitment cells. Biochem Biophys Res Commun 385:11–15
pubmed: 19442651
doi: 10.1016/j.bbrc.2009.05.027
Yoshida S, Kato T, Yako H, Susa T, Cai LY, Osuna M, Inoue K, Kato Y (2011) Significant quantitative and qualitative transition in pituitary stem/progenitor cells occurs during the postnatal development of the rat anterior pituitary. J Neuroendocrinol 23:933–943
pubmed: 21815952
pmcid: 3258424
doi: 10.1111/j.1365-2826.2011.02198.x
Yoshida S, Nishimura N, Ueharu H, Kanno N, Higuchi M, Horiguchi K, Kato T, Kato Y (2016b) Isolation of adult pituitary stem/progenitor cell clusters located in the parenchyma of the rat anterior lobe. Stem Cell Res 17:318–329
pubmed: 27596959
doi: 10.1016/j.scr.2016.08.016
Yoshida S, Nishimura N, Yurino H, Kobayashi M, Horiguchi K, Yano K, Hashimoto S, Kato T, Kato Y (2018) Differentiation capacities of PS-clusters, adult pituitary stem/progenitor cell clusters located in the parenchymal-niche, of the rat anterior lobe. PLoS ONE 13:e0196029
pubmed: 29684040
pmcid: 5912746
doi: 10.1371/journal.pone.0196029
Zhang D, Ighaniyan S, Stathopoulos L, Rollo B, Landman K, Hutson J, Newgreen D (2014) The neural crest: a versatile organ system. Birth Defects Res C Embryo Today 102:275–298
pubmed: 25227568
doi: 10.1002/bdrc.21081
Zhu X, Gleiberman AS, Rosenfeld MG (2007) Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 87:933–963
pubmed: 17615393
doi: 10.1152/physrev.00006.2006