Analysis of global Napier grass (Cenchrus purpureus) collections reveals high genetic diversity among genotypes with some redundancy between collections.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 09 2023
04 09 2023
Historique:
received:
23
05
2023
accepted:
29
08
2023
medline:
6
9
2023
pubmed:
5
9
2023
entrez:
4
9
2023
Statut:
epublish
Résumé
Genetic diversity amongst genotypes of several Napier grass collections was analyzed and compared with the diversity in a set of open pollinated progeny plants. A total of 114,881 SNP and 46,293 SilicoDArT genome-wide markers were generated on 574 Napier grass genotypes. Of these, 86% of the SNP and 66% of the SilicoDArT markers were mapped onto the fourteen chromosomes of the Napier grass genome. For genetic diversity analysis, a subset of highly polymorphic and informative SNP markers was filtered using genomic position information, a maximum of 10% missing values, a minimum minor allele frequency of 5%, and a maximum linkage-disequilibrium value of 0.5. Extensive genetic variation, with an average Nei's genetic distance value of 0.23, was identified in the material. The genotypes clustered into three major and eleven sub-clusters with high levels of genetic variation contained both within (54%) and between (46%) clusters. However, we found that there was low to moderate genetic differentiation among the collections and that some overlap and redundancy occurred between collections. The progeny plants were genetically diverse and divergent from the germplasm collections, with an average F
Identifiants
pubmed: 37667017
doi: 10.1038/s41598-023-41583-7
pii: 10.1038/s41598-023-41583-7
pmc: PMC10477186
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
14509Informations de copyright
© 2023. Springer Nature Limited.
Références
Bioinformatics. 2012 Dec 15;28(24):3326-8
pubmed: 23060615
Mol Ecol. 2005 Jul;14(8):2611-20
pubmed: 15969739
AoB Plants. 2015 Sep 02;7:
pubmed: 26333827
Sci Rep. 2020 Apr 20;10(1):6613
pubmed: 32313095
Front Plant Sci. 2022 Jan 07;12:678862
pubmed: 35069609
Genetics. 1992 Jun;131(2):479-91
pubmed: 1644282
Genetics. 2003 Mar;163(3):1153-67
pubmed: 12663552
Bioinformatics. 2004 Jan 22;20(2):289-90
pubmed: 14734327
Genes (Basel). 2021 Aug 10;12(8):
pubmed: 34440407
Genomics Proteomics Bioinformatics. 2021 Aug;19(4):629-640
pubmed: 34492338
PLoS One. 2019 Jun 27;14(6):e0210928
pubmed: 31246947
Mol Ecol Resour. 2021 Feb;21(2):526-542
pubmed: 33040437
Sci Rep. 2019 May 6;9(1):6936
pubmed: 31061417
Plants (Basel). 2022 Sep 28;11(19):
pubmed: 36235418
J Genet. 2009 Dec;88(3):281-90
pubmed: 20086293
Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7037-42
pubmed: 10860968
PeerJ. 2014 Mar 04;2:e281
pubmed: 24688859
Genet Epidemiol. 2014 May;38(4):291-9
pubmed: 24718985
BMC Plant Biol. 2019 Dec 10;19(1):548
pubmed: 31822283
Bioinformatics. 2008 Jun 1;24(11):1403-5
pubmed: 18397895
Bioresour Technol. 2015;188:103-8
pubmed: 25727997
Ann Eugen. 1951 Mar;15(4):323-54
pubmed: 24540312
Ann Bot. 2010 Jul;106(1):107-30
pubmed: 20570830
Genetics. 2000 Jun;155(2):945-59
pubmed: 10835412
Methods Mol Biol. 2012;888:67-89
pubmed: 22665276
AoB Plants. 2013;5:plt022
pubmed: 23671788
Mol Ecol Resour. 2018 May;18(3):691-699
pubmed: 29266847