Construction of Semisynthetic Shark vNAR Yeast Surface Display Antibody Libraries.

Affinity maturation Antibody engineering IgNAR Library generation Protein engineering Semisynthetic antibody library Shark Single domain antibody Yeast surface display vNAR

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2023
Historique:
medline: 11 9 2023
pubmed: 8 9 2023
entrez: 7 9 2023
Statut: ppublish

Résumé

The adaptive immune system of sharks comprises a unique heavy chain-only antibody isotype, termed immunoglobulin new antigen receptor (IgNAR), in which antigen binding is mediated by a single variable domain, referred to as vNAR. In recent years, efforts were made to harness these domains for biomedical and biotechnological applications particularly due to their high affinity and specificity combined with a small size and high stability. Herein, we describe protocols for the construction of semisynthetic, CDR3-randomized vNAR libraries for the isolation of target-specific paratopes by yeast surface display. Additionally, we provide guidance for affinity maturation of a panel of antigen-enriched vNAR domains through CDR1 diversification of the FACS-selected, antigen-enriched population and sublibrary establishment.

Identifiants

pubmed: 37679622
doi: 10.1007/978-1-0716-3381-6_11
doi:

Substances chimiques

Antibodies 0
Receptors, Antigen, B-Cell 0
Antibodies, Fungal 0
Immunoglobulin Isotypes 0
Immunoglobulin Heavy Chains 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

227-243

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Grzeschik J, Könning D, Hinz SC et al (2018) Generation of semi-synthetic shark IgNAR single-domain antibody libraries. In: Hust M, Lim TS (eds) Phage display. Springer New York, New York, pp 147–167
doi: 10.1007/978-1-4939-7447-4_8
Greenberg AS, Avila D, Hughes M et al (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374:168–173. https://doi.org/10.1038/374168a0
doi: 10.1038/374168a0 pubmed: 7877689
Zielonka S, Empting M, Grzeschik J et al (2015) Structural insights and biomedical potential of IgNAR scaffolds from sharks. MAbs 7:15–25. https://doi.org/10.4161/19420862.2015.989032
doi: 10.4161/19420862.2015.989032 pubmed: 25523873
Krah S, Schröter C, Zielonka S et al (2016) Single-domain antibodies for biomedical applications. Immunopharmacol Immunotoxicol 38:21–28. https://doi.org/10.3109/08923973.2015.1102934
doi: 10.3109/08923973.2015.1102934 pubmed: 26551147
Könning D, Zielonka S, Grzeschik J et al (2017) Camelid and shark single domain antibodies: structural features and therapeutic potential. Curr Opin Struct Biol 45:10–16. https://doi.org/10.1016/j.sbi.2016.10.019
doi: 10.1016/j.sbi.2016.10.019 pubmed: 27865111
Dooley H, Stanfield RL, Brady RA, Flajnik MF (2006) First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. Proc Natl Acad Sci 103:1846–1851. https://doi.org/10.1073/pnas.0508341103
doi: 10.1073/pnas.0508341103 pubmed: 16446445 pmcid: 1413636
Simmons DP, Streltsov VA, Dolezal O et al (2008) Shark IgNAR antibody mimotopes target a murine immunoglobulin through extended CDR3 loop structures. Proteins Struct Funct Bioinf 71:119–130. https://doi.org/10.1002/prot.21663
doi: 10.1002/prot.21663
Streltsov VA, Carmichael JA, Nuttall SD (2005) Structure of a shark IgNAR antibody variable domain and modeling of an early-developmental isotype: structure of a shark ignar antibody variable domain and modeling of an early-developmental isotype. Protein Sci 14:2901–2909. https://doi.org/10.1110/ps.051709505
doi: 10.1110/ps.051709505 pubmed: 16199666 pmcid: 2253229
Flajnik MF, Deschacht N, Muyldermans S (2011) A case of convergence: why did a simple alternative to canonical antibodies arise in sharks and camels? PLoS Biol 9:e1001120. https://doi.org/10.1371/journal.pbio.1001120
doi: 10.1371/journal.pbio.1001120 pubmed: 21829328 pmcid: 3149040
Henderson KA, Streltsov VA, Coley AM et al (2007) Structure of an IgNAR-AMA1 complex: targeting a conserved hydrophobic cleft broadens malarial strain recognition. Structure 15:1452–1466. https://doi.org/10.1016/j.str.2007.09.011
doi: 10.1016/j.str.2007.09.011 pubmed: 17997971
Li Z, Krippendorff B-F, Sharma S et al (2016) Influence of molecular size on tissue distribution of antibody fragments. MAbs 8:113–119. https://doi.org/10.1080/19420862.2015.1111497
doi: 10.1080/19420862.2015.1111497 pubmed: 26496429
Zielonka S, Weber N, Becker S et al (2014) Shark attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. J Biotechnol 191:236–245. https://doi.org/10.1016/j.jbiotec.2014.04.023
doi: 10.1016/j.jbiotec.2014.04.023 pubmed: 24862193
Barelle C, Porter A (2015) VNARs: an ancient and unique repertoire of molecules that deliver small, soluble, stable and high affinity binders of proteins. Antibodies 4:240–258. https://doi.org/10.3390/antib4030240
doi: 10.3390/antib4030240
Kovaleva M, Ferguson L, Steven J et al (2014) Shark variable new antigen receptor biologics – a novel technology platform for therapeutic drug development. Expert Opin Biol Ther 14:1527–1539. https://doi.org/10.1517/14712598.2014.937701
doi: 10.1517/14712598.2014.937701 pubmed: 25090369
Bannas P, Hambach J, Koch-Nolte F (2017) Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol 8. https://doi.org/10.3389/fimmu.2017.01603
Chanier T, Chames P (2019) Nanobody engineering: toward next generation immunotherapies and immunoimaging of cancer. Antibodies 8:13. https://doi.org/10.3390/antib8010013
doi: 10.3390/antib8010013 pubmed: 31544819 pmcid: 6640690
Pekar L, Busch M, Valldorf B et al (2020) Biophysical and biochemical characterization of a VHH-based IgG-like bi- and trispecific antibody platform. MAbs:1812210. https://doi.org/10.1080/19420862.2020.1812210
Yanakieva D, Pekar L, Evers A et al (2022) Beyond bispecificity: controlled Fab arm exchange for the generation of antibodies with multiple specificities. MAbs 14. https://doi.org/10.1080/19420862.2021.2018960
Lipinski B, Arras P, Pekar L et al (2023) NKP46 -specific single domain antibodies enable facile engineering of various potent NK cell engager formats. Protein Sci. https://doi.org/10.1002/pro.4593
Ubah OC, Buschhaus MJ, Ferguson L et al (2018) Next-generation flexible formats of VNAR domains expand the drug platform’s utility and developability. Biochem Soc Trans 46:1559–1565. https://doi.org/10.1042/BST20180177
doi: 10.1042/BST20180177 pubmed: 30381336
Kovaleva M, Johnson K, Steven J et al (2017) Therapeutic potential of shark anti-ICOSL VNAR domains is exemplified in a murine model of autoimmune non-infectious uveitis. Front Immunol 8. https://doi.org/10.3389/fimmu.2017.01121
Ubah OC, Steven J, Porter AJ, Barelle CJ (2019) An anti-hTNF-α variable new antigen receptor format demonstrates superior in vivo preclinical efficacy to Humira
Sehlin D, Stocki P, Gustavsson T et al (2020) Brain delivery of biologics using a cross-species reactive transferrin receptor 1 VNAR shuttle. FASEB J 34:13272–13283. https://doi.org/10.1096/fj.202000610RR
doi: 10.1096/fj.202000610RR pubmed: 32779267
Camacho-Villegas T, Mata-González M, García-Ubbelohd W et al (2018) Intraocular penetration of a vNAR: in vivo and in vitro VEGF165 neutralization. Mar Drugs 16:113. https://doi.org/10.3390/md16040113
doi: 10.3390/md16040113 pubmed: 29614715 pmcid: 5923400
Könning D, Rhiel L, Empting M et al (2017) Semi-synthetic vNAR libraries screened against therapeutic antibodies primarily deliver anti-idiotypic binders. Sci Rep 7. https://doi.org/10.1038/s41598-017-10513-9
Macarrón Palacios A, Grzeschik J, Deweid L et al (2020) Specific targeting of lymphoma cells using semisynthetic anti-idiotype shark antibodies. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.560244
Li D, English H, Hong J et al (2022) A novel PD-L1-targeted shark VNAR single-domain-based CAR-T cell strategy for treating breast cancer and liver cancer. Mol Ther Oncolytics 24:849–863. https://doi.org/10.1016/j.omto.2022.02.015
doi: 10.1016/j.omto.2022.02.015 pubmed: 35317524 pmcid: 8917269
Ubah OC, Lake EW, Gunaratne GS et al (2021) Mechanisms of SARS-CoV-2 neutralization by shark variable new antigen receptors elucidated through X-ray crystallography. Nat Commun 12. https://doi.org/10.1038/s41467-021-27611-y
Gauhar A, Privezentzev CV, Demydchuk M et al (2021) Single domain shark VNAR antibodies neutralize SARS-CoV-2 infection in vitro. FASEB J 35. https://doi.org/10.1096/fj.202100986RR
Buschhaus MJ, Becker S, Porter AJ, Barelle CJ (2019) Isolation of highly selective IgNAR variable single-domains against a human therapeutic Fc scaffold and their application as tailor-made bioprocessing reagents. Protein Eng Des Sel 32:385–399. https://doi.org/10.1093/protein/gzaa002
doi: 10.1093/protein/gzaa002 pubmed: 32119084
Leow CH, Fischer K, Leow CY et al (2018) Isolation and characterization of malaria PfHRP2 specific VNAR antibody fragments from immunized shark phage display library. Malar J 17. https://doi.org/10.1186/s12936-018-2531-y
Könning D, Kolmar H (2018) Beyond antibody engineering: directed evolution of alternative binding scaffolds and enzymes using yeast surface display. Microb Cell Factories 17. https://doi.org/10.1186/s12934-018-0881-3
Pekar L, Klausz K, Busch M et al (2021) Affinity maturation of B7-H6 translates into enhanced NK cell–mediated tumor cell lysis and improved proinflammatory cytokine release of bispecific immunoligands via NKp30 engagement. J Immunol 206:225–236. https://doi.org/10.4049/jimmunol.2001004
doi: 10.4049/jimmunol.2001004 pubmed: 33268483
Valldorf B, Hinz SC, Russo G et al (2021) Antibody display technologies: selecting the cream of the crop. Biol Chem 0. https://doi.org/10.1515/hsz-2020-0377
Uchański T, Zögg T, Yin J et al (2019) An improved yeast surface display platform for the screening of nanobody immune libraries. Sci Rep 9. https://doi.org/10.1038/s41598-018-37212-3
Roth L, Krah S, Klemm J et al (2020) Isolation of antigen-specific VHH single-domain antibodies by combining animal immunization with yeast surface display. Methods Mol Biol 2070:173–189. https://doi.org/10.1007/978-1-4939-9853-1_10
doi: 10.1007/978-1-4939-9853-1_10 pubmed: 31625096
Klausz K, Pekar L, Boje AS et al (2022) Multifunctional NK cell–engaging antibodies targeting EGFR and NKp30 elicit efficient tumor cell killing and proinflammatory cytokine release. J Immunol 209:1724–1735. https://doi.org/10.4049/jimmunol.2100970
doi: 10.4049/jimmunol.2100970 pubmed: 36104113
Zielonka S, Empting M, Könning D et al (2015) The shark strikes twice: hypervariable loop 2 of shark IgNAR antibody variable domains and its potential to function as an autonomous paratope. Mar Biotechnol 17:386–392. https://doi.org/10.1007/s10126-015-9642-z
doi: 10.1007/s10126-015-9642-z
Pekar L, Klewinghaus D, Arras P et al (2021) Milking the cow: cattle-derived chimeric ultralong CDR-H3 antibodies and their engineered CDR-H3-only Knobbody counterparts targeting epidermal growth factor receptor elicit potent NK cell-mediated cytotoxicity. Front Immunol 12:4378 . https://doi.org/10.3389/fimmu.2021.742418
doi: 10.3389/fimmu.2021.742418
Klewinghaus D, Pekar L, Arras P et al (2022) Grabbing the bull by both horns: bovine ultralong CDR-H3 paratopes enable engineering of ‘almost natural’ common light chain bispecific antibodies suitable for effector cell redirection. Front Immunol 12. https://doi.org/10.3389/fimmu.2021.801368
Ewert S, Honegger A, Plückthun A (2003) Structure-based improvement of the biophysical properties of immunoglobulin V
doi: 10.1021/bi026448p pubmed: 12578364
Ewert S, Huber T, Honegger A, Plückthun A (2003) Biophysical properties of human antibody variable domains. J Mol Biol 325:531–553. https://doi.org/10.1016/S0022-2836(02)01237-8
doi: 10.1016/S0022-2836(02)01237-8 pubmed: 12498801
Könning D, Zielonka S, Sellmann C et al (2016) Isolation of a pH-sensitive IgNAR variable domain from a yeast-displayed, histidine-doped master library. Mar Biotechnol 18:161–167. https://doi.org/10.1007/s10126-016-9690-z
doi: 10.1007/s10126-016-9690-z
Benatuil L, Perez JM, Belk J, Hsieh C-M (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23:155–159. https://doi.org/10.1093/protein/gzq002
doi: 10.1093/protein/gzq002 pubmed: 20130105
Boder ET, Wittrup KD (2000) Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:430–444. https://doi.org/10.1016/s0076-6879(00)28410-3
doi: 10.1016/s0076-6879(00)28410-3 pubmed: 11075358
Diaz M, Greenberg AS, Flajnik MF (1998) Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: possible role in antigen-driven reactions in the absence of germinal centers. Proc Natl Acad Sci 95:14343–14348. https://doi.org/10.1073/pnas.95.24.14343
doi: 10.1073/pnas.95.24.14343 pubmed: 9826702 pmcid: 24375

Auteurs

Harald Kolmar (H)

Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany. Kolmar@Biochemie-TUD.de.

Julius Grzeschik (J)

Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.

Doreen Könning (D)

Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany.

Simon Krah (S)

Antibody Discovery & Protein Engineering, Merck KGaA, Darmstadt, Germany.

Stefan Zielonka (S)

Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany. stefan.zielonka@merckgroup.com.
Antibody Discovery & Protein Engineering, Merck KGaA, Darmstadt, Germany. stefan.zielonka@merckgroup.com.

Articles similaires

Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Metabolic Networks and Pathways Saccharomyces cerevisiae Computational Biology Synthetic Biology Computer Simulation

Classifications MeSH