Quantum gate algorithm for reference-guided DNA sequence alignment.
DNA alignment
DNA sequencing
Quantum algorithms
Quantum computing
Journal
Computational biology and chemistry
ISSN: 1476-928X
Titre abrégé: Comput Biol Chem
Pays: England
ID NLM: 101157394
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
08
08
2023
revised:
07
09
2023
accepted:
09
09
2023
medline:
27
11
2023
pubmed:
18
9
2023
entrez:
17
9
2023
Statut:
ppublish
Résumé
Reference-guided DNA sequencing and alignment is an important process in computational molecular biology. The amount of DNA data grows very fast, and many new genomes are waiting to be sequenced while millions of private genomes need to be re-sequenced. Each human genome has 3.2B base pairs, and each one could be stored with 2 bits of information, so one human genome would take 6.4B bits or ∼760MB of storage (National Institute of General Medical Sciences, n.d.). Today's most powerful tensor processing units cannot handle the volume of DNA data necessitating a major leap in computing power. It is, therefore, important to investigate the usefulness of quantum computers in genomic data analysis, especially in DNA sequence alignment. Quantum computers are expected to be involved in DNA sequencing, initially as parts of classical systems, acting as quantum accelerators. The number of available qubits is increasing annually, and future quantum computers could conduct DNA sequencing, taking the place of classical computing systems. We present a novel quantum algorithm for reference-guided DNA sequence alignment modeled with gate-based quantum computing. The algorithm is scalable, can be integrated into existing classical DNA sequencing systems and is intentionally structured to limit computational errors. The quantum algorithm has been tested using the quantum processing units and simulators provided by IBM Quantum, and its correctness has been confirmed.
Identifiants
pubmed: 37717360
pii: S1476-9271(23)00150-0
doi: 10.1016/j.compbiolchem.2023.107959
pii:
doi:
Substances chimiques
DNA
9007-49-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
107959Informations de copyright
Copyright © 2023 Elsevier Ltd. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.