Selection and validation of reliable reference genes for quantitative real-time PCR in Barnyard millet (Echinochloa spp.) under varied abiotic stress conditions.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
20 09 2023
Historique:
received: 16 12 2022
accepted: 11 08 2023
medline: 22 9 2023
pubmed: 21 9 2023
entrez: 21 9 2023
Statut: epublish

Résumé

Quantitative real-time polymerase chain reaction (RT-qPCR) using a stable reference gene is widely used for gene expression research. Barnyard millet (Echinochloa spp.) is an ancient crop in Asia and Africa that is widely cultivated for food and fodder. It thrives well under drought, salinity, cold, and heat environmental conditions, besides adapting to any soil type. To date, there are no gene expression studies performed to identify the potential candidate gene responsible for stress response in barnyard millet, due to lack of reference gene. Here, 10 candidate reference genes, Actin (ACT), α-tubulin (α-TUB), β-tubulin (β-TUB), RNA pol II (RP II), elongation factor-1 alpha (EF-1α), adenine phosphoribosyltransferase (APRT), TATA-binding protein-like factor (TLF), ubiquitin-conjugating enzyme 2 (UBC2), ubiquitin-conjugating enzyme E2L5 (UBC5) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were selected from mRNA sequences of E. crus-galli and E. colona var frumentacea. Five statistical algorithms (geNorm, NormFinder, BestKeeper, ΔCt, and RefFinder) were applied to determine the expression stabilities of these genes in barnyard millet grown under four different abiotic stress (drought, salinity, cold and heat) exposed at different time points. The UBC5 and ɑ-TUB in drought, GAPDH in salinity, GAPDH and APRT in cold, and EF-1α and RP II in heat were the most stable reference genes, whereas ß-TUB was the least stable irrespective of stress conditions applied. Further Vn/Vn + 1 analysis revealed two reference genes were sufficient to normalize gene expression across all sample sets. The suitability of identified reference genes was validated with Cu-ZnSOD (SOD1) in the plants exposed to different abiotic stress conditions. The results revealed that the relative quantification of the SOD1 gene varied according to reference genes and the number of reference genes used, thus highlighting the importance of the choice of a reference gene in such experiments. This study provides a foundational framework for standardizing RT-qPCR analyses, enabling accurate gene expression profiling in barnyard millet.

Identifiants

pubmed: 37731036
doi: 10.1038/s41598-023-40526-6
pii: 10.1038/s41598-023-40526-6
pmc: PMC10511452
doi:

Substances chimiques

Peptide Elongation Factor 1 0
Superoxide Dismutase-1 EC 1.15.1.1
Ubiquitin-Conjugating Enzymes EC 2.3.2.23
Adenine Phosphoribosyltransferase EC 2.4.2.7

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

15573

Informations de copyright

© 2023. Springer Nature Limited.

Références

Plant Mol Biol. 2006 Jul;61(4-5):733-46
pubmed: 16897488
PLoS One. 2017 Oct 11;12(10):e0186052
pubmed: 29020034
J Mol Endocrinol. 2005 Jun;34(3):597-601
pubmed: 15956331
PLoS One. 2019 Oct 10;14(10):e0223609
pubmed: 31600284
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Mol Genet Genomics. 2010 Mar;283(3):233-41
pubmed: 20098998
Sci Rep. 2016 Mar 14;6:23036
pubmed: 26972345
Nat Commun. 2019 Jan 10;10(1):124
pubmed: 30631066
Sci Rep. 2018 Jun 18;8(1):9311
pubmed: 29915368
Biochem Biophys Res Commun. 2006 Jun 30;345(2):646-51
pubmed: 16690022
Mol Biol Rep. 2021 Nov;48(11):7477-7485
pubmed: 34637095
Cancer Res. 2004 Aug 1;64(15):5245-50
pubmed: 15289330
Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
pubmed: 12184808
Sci Rep. 2019 Jun 10;9(1):8408
pubmed: 31182737
Plant Methods. 2020 Apr 25;16:58
pubmed: 32355504
PLoS One. 2015 Mar 31;10(3):e0122515
pubmed: 25825906
J Biosci. 2018 Mar;43(1):173-187
pubmed: 29485125
BMC Genomics. 2011 Mar 21;12:156
pubmed: 21418615
Plant Signal Behav. 2013 Jun;8(6):e24525
pubmed: 23603959
Plant Cell Rep. 2013 Dec;32(12):1869-77
pubmed: 24013792
Front Plant Sci. 2015 Jun 16;6:420
pubmed: 26136756
PLoS One. 2015 Mar 18;10(3):e0119569
pubmed: 25786207
Nat Commun. 2022 Feb 3;13(1):689
pubmed: 35115514
Front Plant Sci. 2016 Apr 25;7:529
pubmed: 27200008
Plant Mol Biol. 2012 Jan 31;:
pubmed: 22290409
Transgenic Res. 2008 Apr;17(2):281-91
pubmed: 17541718
Antioxidants (Basel). 2021 Feb 11;10(2):
pubmed: 33670123
J Exp Bot. 2004 Jul;55(402):1445-54
pubmed: 15208338
Front Plant Sci. 2017 Sep 15;8:1605
pubmed: 28966627
BMC Plant Biol. 2010 Jan 07;10:4
pubmed: 20056000
Nat Protoc. 2008;3(6):1101-8
pubmed: 18546601
J Exp Bot. 2009;60(2):487-93
pubmed: 19264760
Anal Biochem. 2003 Oct 15;321(2):226-35
pubmed: 14511688
BMC Plant Biol. 2010 Mar 21;10:49
pubmed: 20302670
Front Genet. 2020 Jun 23;11:500
pubmed: 32655612
Plant Mol Biol. 2010 Oct;74(3):307-11
pubmed: 20658259
Plant Biotechnol J. 2008 Aug;6(6):609-18
pubmed: 18433420
Antioxidants (Basel). 2021 Jul 25;10(8):
pubmed: 34439430
Genes Immun. 2005 Jun;6(4):279-84
pubmed: 15815687
Biotechnol Lett. 2004 Mar;26(6):509-15
pubmed: 15127793
PeerJ. 2015 Nov 26;3:e1347
pubmed: 26644967
Front Plant Sci. 2015 Mar 24;6:157
pubmed: 25852710
Front Plant Sci. 2016 Apr 25;7:536
pubmed: 27200013
Biotechniques. 2000 Aug;29(2):332-7
pubmed: 10948434
Gene. 2013 Nov 1;530(1):44-50
pubmed: 23933278
Genes (Basel). 2022 Jan 17;13(1):
pubmed: 35052500
Sci Rep. 2017 Jan 25;7:40290
pubmed: 28120870
Sci Rep. 2014 Nov 13;4:7042
pubmed: 25391499
Mol Aspects Med. 2006 Apr-Jun;27(2-3):95-125
pubmed: 16460794
Biochem Biophys Res Commun. 2004 Jan 23;313(4):856-62
pubmed: 14706621
Exp Hematol. 2002 Jun;30(6):503-12
pubmed: 12063017
Plant Physiol. 2005 Sep;139(1):5-17
pubmed: 16166256
Sci Rep. 2020 Apr 30;10(1):7374
pubmed: 32355237
Plant Methods. 2017 Oct 16;13:85
pubmed: 29075311
Int J Mol Sci. 2014 Dec 02;15(12):22155-72
pubmed: 25474086
Physiol Mol Biol Plants. 2018 Sep;24(5):793-807
pubmed: 30150855

Auteurs

Vellaichamy Gandhimeyyan Renganathan (VG)

Department of Biotechnology, Centre of Excellence for Innovations, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India.

Raman Renuka (R)

Department of Biotechnology, Centre of Excellence for Innovations, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India. renukaraman@tnau.ac.in.

Chockalingam Vanniarajan (C)

Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, India.

Muthurajan Raveendran (M)

Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India.

Allimuthu Elangovan (A)

Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India.

Articles similaires

Animals Flax Chickens Dietary Supplements Endo-1,4-beta Xylanases
Animals Rumen Methane Fermentation Cannabis

Classifications MeSH