Iron insertion into coproporphyrin III-ferrochelatase complex: Evidence for an intermediate distorted catalytic species.
crystal soaking
ferrochelatase
metal titration
metalation
resonance Raman spectroscopy
x-ray crystallography
Journal
Protein science : a publication of the Protein Society
ISSN: 1469-896X
Titre abrégé: Protein Sci
Pays: United States
ID NLM: 9211750
Informations de publication
Date de publication:
11 2023
11 2023
Historique:
revised:
07
09
2023
received:
19
07
2023
accepted:
20
09
2023
medline:
30
10
2023
pubmed:
25
9
2023
entrez:
25
9
2023
Statut:
ppublish
Résumé
Understanding the reaction mechanism of enzymes at the molecular level is generally a difficult task, since many parameters affect the turnover. Often, due to high reactivity and formation of transient species or intermediates, detailed information on enzymatic catalysis is obtained by means of model substrates. Whenever possible, it is essential to confirm a reaction mechanism based on substrate analogues or model systems by using the physiological substrates. Here we disclose the ferrous iron incorporation mechanism, in solution, and in crystallo, by the coproporphyrin III-coproporphyrin ferrochelatase complex from the firmicute, pathogen, and antibiotic resistant, Listeria monocytogenes. Coproporphyrin ferrochelatase plays an important physiological role as the metalation represents the penultimate reaction step in the prokaryotic coproporphyrin-dependent heme biosynthetic pathway, yielding coproheme (ferric coproporphyrin III). By following the metal titration with resonance Raman spectroscopy and x-ray crystallography, we prove that upon metalation the saddling distortion becomes predominant both in the crystal and in solution. This is a consequence of the readjustment of hydrogen bond interactions of the propionates with the protein scaffold during the enzymatic catalysis. Once the propionates have established the interactions typical of the coproheme complex, the distortion slowly decreases, to reach the almost planar final product.
Identifiants
pubmed: 37743577
doi: 10.1002/pro.4788
pmc: PMC10578119
doi:
Substances chimiques
coproporphyrin III
14643-66-4
Coproporphyrins
0
Iron
E1UOL152H7
Ferrochelatase
EC 4.99.1.1
Propionates
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e4788Subventions
Organisme : Austrian Science Fund FWF
Pays : Austria
Informations de copyright
© 2023 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.
Références
J Am Chem Soc. 2004 Dec 22;126(50):16361-7
pubmed: 15600337
Protein Sci. 2023 Jan;32(1):e4534
pubmed: 36479958
Protein Sci. 2023 Nov;32(11):e4788
pubmed: 37743577
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21
pubmed: 20057044
Biochim Biophys Acta Mol Cell Res. 2021 Jan;1868(1):118861
pubmed: 32976912
J Biol Chem. 1983 Oct 10;258(19):11453-9
pubmed: 6688622
Nat Struct Biol. 2001 Feb;8(2):156-60
pubmed: 11175906
Biochem J. 1980 Sep 1;189(3):645-8
pubmed: 7213349
J Mol Biol. 2000 Mar 17;297(1):221-32
pubmed: 10704318
Biochem J. 2017 Oct 10;474(20):3513-3522
pubmed: 28864672
J Mol Biol. 2008 May 16;378(5):1074-83
pubmed: 18423489
Biochemistry. 1998 Jan 20;37(3):779-82
pubmed: 9457047
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674
pubmed: 19461840
FEBS J. 2022 Mar;289(6):1680-1699
pubmed: 34719106
FEBS J. 2020 Jul;287(13):2779-2796
pubmed: 31794133
J Porphyr Phthalocyanines. 2011 May;15(5):357-363
pubmed: 21776189
Biochemistry. 2001 Aug 21;40(33):9821-7
pubmed: 11502175
J Phys Chem A. 2005 Jan 27;109(3):421-30
pubmed: 16833362
J Biol Inorg Chem. 2011 Feb;16(2):235-42
pubmed: 21052751
Science. 1990 Aug 17;249(4970):781-3
pubmed: 2389144
Arch Biochem Biophys. 2015 May 15;574:27-35
pubmed: 25711532
Cell Mol Life Sci. 2000 Dec;57(13-14):1909-26
pubmed: 11215517
Biochemistry. 2000 Mar 14;39(10):2517-29
pubmed: 10704201
Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):61-9
pubmed: 18094468
Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1789-93
pubmed: 17261801
Structure. 1997 Nov 15;5(11):1501-10
pubmed: 9384565
Biochemistry. 2007 Jan 9;46(1):87-94
pubmed: 17198378
Biochem J. 1980 Apr 15;188(1):145-52
pubmed: 7406876
Struct Dyn. 2014 Mar 27;1(2):024701
pubmed: 26798774
Biochem J. 2021 Sep 17;478(17):3239-3252
pubmed: 34402499
Biochemistry. 2002 Jul 2;41(26):8253-62
pubmed: 12081474
Biochim Biophys Acta. 1989 Nov 9;999(1):7-11
pubmed: 2804139
Acta Crystallogr D Struct Biol. 2023 Jun 1;79(Pt 6):449-461
pubmed: 37259835
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501
pubmed: 20383002
J Biol Chem. 1989 Nov 15;264(32):19099-102
pubmed: 2808415
J Chem Inf Model. 2016 Dec 27;56(12):2421-2433
pubmed: 27801584
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):425-30
pubmed: 22505262
Acta Crystallogr D Struct Biol. 2017 Feb 1;73(Pt 2):112-122
pubmed: 28177307
Biochemistry. 2006 Mar 7;45(9):2904-12
pubmed: 16503645
Biochemistry. 1998 Sep 1;37(35):12301-19
pubmed: 9724545
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
pubmed: 20124702
J Mol Model. 2013 Feb;19(2):963-71
pubmed: 23097001
Trends Biochem Sci. 2006 Mar;31(3):135-42
pubmed: 16469498
Biochemistry. 2002 Nov 19;41(46):13499-506
pubmed: 12427010
Microbiol Mol Biol Rev. 2017 Jan 25;81(1):
pubmed: 28123057
J Biol Inorg Chem. 2003 Apr;8(4):452-8
pubmed: 12761666
Chem Commun (Camb). 2015 Dec 14;51(96):17031-63
pubmed: 26482230
Biochemistry. 2002 Apr 16;41(15):4809-18
pubmed: 11939775