Mur ligase F as a new target for the flavonoids quercitrin, myricetin, and (-)-epicatechin.
(–)-epicatechin
Antibacterial
MurF
Myricetin
Quercitrin
Journal
Journal of computer-aided molecular design
ISSN: 1573-4951
Titre abrégé: J Comput Aided Mol Des
Pays: Netherlands
ID NLM: 8710425
Informations de publication
Date de publication:
12 2023
12 2023
Historique:
received:
12
07
2023
accepted:
14
09
2023
medline:
2
11
2023
pubmed:
5
10
2023
entrez:
5
10
2023
Statut:
ppublish
Résumé
MurC, D, E, and F are ATP-dependent ligases involved in the stepwise assembly of the tetrapeptide stem of forming peptidoglycan. As highly conserved targets found exclusively in bacterial cells, they are of significant interest for antibacterial drug discovery. In this study, we employed a computer-aided molecular design approach to identify potential inhibitors of MurF. A biochemical inhibition assay was conducted, screening twenty-four flavonoids and related compounds against MurC-F, resulting in the identification of quercitrin, myricetin, and (-)-epicatechin as MurF inhibitors with IC
Identifiants
pubmed: 37796382
doi: 10.1007/s10822-023-00535-z
pii: 10.1007/s10822-023-00535-z
pmc: PMC10618370
doi:
Substances chimiques
Ligases
EC 6.-
myricetin
76XC01FTOJ
Catechin
8R1V1STN48
quercitrin
2Y8906LC5P
Peptidoglycan
0
Flavonoids
0
Adenosine Triphosphate
8L70Q75FXE
Peptide Synthases
EC 6.3.2.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
721-733Informations de copyright
© 2023. The Author(s).
Références
Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134. https://doi.org/10.3389/fmicb.2010.00134
doi: 10.3389/fmicb.2010.00134
pubmed: 21687759
pmcid: 3109405
Olesen SH, Ingles DJ, Yang Y, Schönbrunn E (2014) Differential antibacterial properties of the MurA inhibitors terreic acid and fosfomycin: antibacterial properties of terreic acid. J Basic Microbiol 54:322–326. https://doi.org/10.1002/jobm.201200617
doi: 10.1002/jobm.201200617
pubmed: 23686727
Batson S, de Chiara C, Majce V et al (2017) Inhibition of d-Ala:d-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine. Nat Commun 8:1939. https://doi.org/10.1038/s41467-017-02118-7
doi: 10.1038/s41467-017-02118-7
pubmed: 29208891
pmcid: 5717164
Barreteau H, Kovač A, Boniface A et al (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32:168–207. https://doi.org/10.1111/j.1574-6976.2008.00104.x
doi: 10.1111/j.1574-6976.2008.00104.x
pubmed: 18266853
Hrast M, Sosič I, Šink R, Gobec S (2014) Inhibitors of the peptidoglycan biosynthesis enzymes MurA-F. Bioorg Chem 55:2–15. https://doi.org/10.1016/j.bioorg.2014.03.008
doi: 10.1016/j.bioorg.2014.03.008
pubmed: 24755374
Kaushal N, Singh M, Singh Sangwan R (2022) Flavonoids: food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res Int 157:111442. https://doi.org/10.1016/j.foodres.2022.111442
doi: 10.1016/j.foodres.2022.111442
pubmed: 35761682
Farhadi F, Khameneh B, Iranshahi M, Iranshahy M (2019) Antibacterial activity of flavonoids and their structure-activity relationship: an update review. Phytother Res 33:13–40. https://doi.org/10.1002/ptr.6208
doi: 10.1002/ptr.6208
pubmed: 30346068
Terahara N (2015) Flavonoids in foods: a review. Nat Prod Commun 10:521–528
pubmed: 25924542
Hwang MK, Kang NJ, Heo Y-S et al (2009) Fyn kinase is a direct molecular target of delphinidin for the inhibition of cyclooxygenase-2 expression induced by tumor necrosis factor-alpha. Biochem Pharmacol 77:1213–1222. https://doi.org/10.1016/j.bcp.2008.12.021
doi: 10.1016/j.bcp.2008.12.021
pubmed: 19174152
Wright B, Tindall MJ, Lovegrove JA, Gibbins JM (2013) Investigating flavonoids as molecular templates for the design of small-molecule inhibitors of cell signaling. J Food Sci. https://doi.org/10.1111/1750-3841.12293
doi: 10.1111/1750-3841.12293
pubmed: 24329957
Sarbu Lg, Bahrin Lg, Babii C et al (2019) Synthetic flavonoids with antimicrobial activity: a review. J Appl Microbiol 127:1282–1290. https://doi.org/10.1111/jam.14271
doi: 10.1111/jam.14271
pubmed: 30934143
Fang Y, Lu Y, Zang X et al (2016) 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors. Sci Rep 6:23634. https://doi.org/10.1038/srep23634
doi: 10.1038/srep23634
pubmed: 27049530
pmcid: 4822154
Wu D, Kong Y, Han C et al (2008) D-Alanine:D-alanine ligase as a new target for the flavonoids quercetin and apigenin. Int J Antimicrob Agents 32:421–426. https://doi.org/10.1016/j.ijantimicag.2008.06.010
doi: 10.1016/j.ijantimicag.2008.06.010
pubmed: 18774266
Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201. https://doi.org/10.1093/bioinformatics/bti770
doi: 10.1093/bioinformatics/bti770
pubmed: 16301204
The UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D480–D489. https://doi.org/10.1093/nar/gkaa1100
doi: 10.1093/nar/gkaa1100
Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519. https://doi.org/10.1002/pro.5560020916
doi: 10.1002/pro.5560020916
pubmed: 8401235
pmcid: 2142462
Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–410. https://doi.org/10.1093/nar/gkm290
doi: 10.1093/nar/gkm290
pmcid: 1933241
Wang W, Xia M, Chen J et al (2016) Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum. Data Brief 9:345–348. https://doi.org/10.1016/j.dib.2016.05.025
doi: 10.1016/j.dib.2016.05.025
pubmed: 27672674
pmcid: 5030311
Schrödinger (2021) Release 2023-1: maestro. Schrödinger, LLC, New York
Halgren TA (2009) Identifying and characterizing binding Sites and assessing druggability. J Chem Inf Model 49:377–389. https://doi.org/10.1021/ci800324m
doi: 10.1021/ci800324m
pubmed: 19434839
O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminformatics 3:33. https://doi.org/10.1186/1758-2946-3-33
doi: 10.1186/1758-2946-3-33
Schrödinger (2021) Release 2023-1: LigPrep. Schrödinger, LLC, New York
Shelley JC, Cholleti A, Frye LL et al (2007) Epik: a software program for pK(a) prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21:681–691. https://doi.org/10.1007/s10822-007-9133-z
doi: 10.1007/s10822-007-9133-z
pubmed: 17899391
Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J Med Chem 47:1739–1749. https://doi.org/10.1021/jm0306430
doi: 10.1021/jm0306430
pubmed: 15027865
Hrast M, Frlan R, Knez D et al (2021) Mur ligases inhibitors with azastilbene scaffold: expanding the structure–activity relationship. Bioorg Med Chem Lett 40:127966. https://doi.org/10.1016/j.bmcl.2021.127966
doi: 10.1016/j.bmcl.2021.127966
pubmed: 33744441
Liger D, Masson A, Blanot D et al (1995) Over-production, purification and Properties of the uridine-diphosphate-N -Acetylmuramate: l-alanine ligase from Escherichia coli. Eur J Biochem 230:80–87. https://doi.org/10.1111/j.1432-1033.1995.0080i.x
doi: 10.1111/j.1432-1033.1995.0080i.x
pubmed: 7601127
Auger G, Martin L, Bertrand J et al (1998) Large-Scale Preparation, purification, and crystallization of UDP-N-Acetylmuramoyl-l-Alanine:d-Glutamate ligase fromEscherichia coli. Protein Expr Purif 13:23–29. https://doi.org/10.1006/prep.1997.0850
doi: 10.1006/prep.1997.0850
pubmed: 9631510
Gordon E, Flouret B, Chantalat L et al (2001) Crystal structure of UDP-N-acetylmuramoyl-l-alanyl-d-glutamate:meso-Diaminopimelate ligase from Escherichia Coli. J Biol Chem 276:10999–11006. https://doi.org/10.1074/jbc.M009835200
doi: 10.1074/jbc.M009835200
pubmed: 11124264
Dementin S, Bouhss A, Auger G et al (2001) Evidence of a functional requirement for a carbamoylated lysine residue in MurD, MurE and MurF synthetases as established by chemical rescue experiments. Eur J Biochem 268:5800–5807. https://doi.org/10.1046/j.0014-2956.2001.02524.x
doi: 10.1046/j.0014-2956.2001.02524.x
pubmed: 11722566
Bouarab-Chibane L, Forquet V, Lantéri P et al (2019) Antibacterial Properties of Polyphenols: characterization and QSAR (quantitative structure–activity relationship) models. Front Microbiol 10:829. https://doi.org/10.3389/fmicb.2019.00829
doi: 10.3389/fmicb.2019.00829
pubmed: 31057527
pmcid: 6482321
Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750. https://doi.org/10.1155/2013/162750
doi: 10.1155/2013/162750
Roy B, Dutta S, Choudhary A et al (2008) Design, synthesis and RNase a inhibition activity of catechin and epicatechin and nucleobase chimeric molecules. Bioorg Med Chem Lett 18:5411–5414. https://doi.org/10.1016/j.bmcl.2008.09.051
doi: 10.1016/j.bmcl.2008.09.051
pubmed: 18829315
Dutta S, Basak A, Dasgupta S (2010) Synthesis and ribonuclease a inhibition activity of resorcinol and phloroglucinol derivatives of catechin and epicatechin: importance of hydroxyl groups. Bioorg Med Chem 18:6538–6546. https://doi.org/10.1016/j.bmc.2010.06.077
doi: 10.1016/j.bmc.2010.06.077
pubmed: 20692173
Moore PS, Pizza C (1992) Observations on the inhibition of HIV-1 reverse transcriptase by catechins. Biochem J 288:717–719
doi: 10.1042/bj2880717
pubmed: 1281981
pmcid: 1131944
Ramalingam M, Sali VK, Bhardwaj M et al (2020) Inhibition of cyclooxygenase enzyme by Bioflavonoids in Horsegram Seeds alleviates Pain and inflammation. Comb Chem High Throughput Screen 23:931–938. https://doi.org/10.2174/1386207323666200127114551
doi: 10.2174/1386207323666200127114551
pubmed: 31985369
Jung HA, Yokozawa T, Kim B-W et al (2010) Selective inhibition of Prenylated Flavonoids from Sophora flavescens against BACE1 and cholinesterases. Am J Chin Med 38:415–429. https://doi.org/10.1142/S0192415X10007944
doi: 10.1142/S0192415X10007944
pubmed: 20387235
Lim J, Ferruzzi MG, Hamaker BR (2022) Structural requirements of flavonoids for the selective inhibition of α-amylase versus α-glucosidase. Food Chem 370:130981. https://doi.org/10.1016/j.foodchem.2021.130981
doi: 10.1016/j.foodchem.2021.130981
pubmed: 34500290
Lindahl M, Tagesson C (1997) Flavonoids as phospholipase A2 inhibitors: importance of their structure for selective inhibition of Group II phospholipase A2. Inflammation 21:347–356. https://doi.org/10.1023/A:1027306118026
doi: 10.1023/A:1027306118026
pubmed: 9246576
Lolli G, Cozza G, Mazzorana M et al (2012) Inhibition of protein kinase CK2 by flavonoids and tyrphostins. A structural insight. Biochemistry 51:6097–6107. https://doi.org/10.1021/bi300531c
doi: 10.1021/bi300531c
pubmed: 22794353
Ogunbayo OA, Michelangeli F (2014) Related flavonoids cause cooperative inhibition of the sarcoplasmic reticulum Ca
doi: 10.1111/febs.12621
pubmed: 24238016
Yokoyama T, Suzuki R, Mizuguchi M (2021) Crystal structure of death-associated protein kinase 1 in complex with the dietary compound resveratrol. IUCrJ 8:131–138. https://doi.org/10.1107/S2052252520015614
doi: 10.1107/S2052252520015614
pubmed: 33520249
pmcid: 7792996
Yokoyama T, Kosaka Y, Mizuguchi M (2015) Structural insight into the interactions between Death-Associated protein kinase 1 and natural flavonoids. J Med Chem 58:7400–7408. https://doi.org/10.1021/acs.jmedchem.5b00893
doi: 10.1021/acs.jmedchem.5b00893
pubmed: 26322379
Holder S, Lilly M, Brown ML (2007) Comparative molecular field analysis of flavonoid inhibitors of the PIM-1 kinase. Bioorg Med Chem 15:6463–6473. https://doi.org/10.1016/j.bmc.2007.06.025
doi: 10.1016/j.bmc.2007.06.025
pubmed: 17637507
Navarro-Retamal C, Caballero J (2016) Flavonoids as CDK1 inhibitors: insights in their binding orientations and structure-activity relationship. PLoS ONE 11:e0161111. https://doi.org/10.1371/journal.pone.0161111
doi: 10.1371/journal.pone.0161111
pubmed: 27517610
pmcid: 4982677
Plaper A, Golob M, Hafner I et al (2003) Characterization of quercetin binding site on DNA gyrase. BBRC 306:530–536. https://doi.org/10.1016/S0006-291X(03)01006-4
doi: 10.1016/S0006-291X(03)01006-4
pubmed: 12804597
Varela MF, Stephen J, Lekshmi M et al (2021) Bacterial resistance to Antimicrobial Agents. Antibiotics 10:593. https://doi.org/10.3390/antibiotics10050593
doi: 10.3390/antibiotics10050593
pubmed: 34067579
pmcid: 8157006
Ikigai H, Hara Y, Otsuru H, Shimamura T (1998) Mechanism of membrane damage by (–) epigallocatechin gallate. JJCO 46:179–183. https://doi.org/10.11250/chemotherapy1995.46.179
doi: 10.11250/chemotherapy1995.46.179
Richter MF, Drown BS, Riley AP et al (2017) Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545:299–304. https://doi.org/10.1038/nature22308
doi: 10.1038/nature22308
pubmed: 28489819
pmcid: 5737020
Osonga FJ, Akgul A, Miller RM et al (2019) Antimicrobial activity of a New Class of Phosphorylated and Modified Flavonoids. ACS Omega 4:12865–12871. https://doi.org/10.1021/acsomega.9b00077
doi: 10.1021/acsomega.9b00077
pubmed: 31460413
pmcid: 6681995
Wang S, Yao J, Zhou B et al (2018) Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in Vitro. J Food Prot 81:68–78. https://doi.org/10.4315/0362-028X.JFP-17-214
doi: 10.4315/0362-028X.JFP-17-214
pubmed: 29271686
Kajiya K, Hojo H, Suzuki M et al (2004) Relationship between antibacterial activity of (+)-catechin derivatives and their interaction with a model membrane. J Agric Food Chem 52:1514–1519. https://doi.org/10.1021/jf0350111
doi: 10.1021/jf0350111
pubmed: 15030204
Liu T, Peng F, Cao X et al (2021) Design, synthesis, antibacterial activity, antiviral activity, and mechanism of myricetin derivatives containing a quinazolinone moiety. ACS Omega 6:30826–30833. https://doi.org/10.1021/acsomega.1c05256
doi: 10.1021/acsomega.1c05256
pubmed: 34805711
pmcid: 8600648