Induced Resistance Mechanism of Bacillus velezensis S3-1 Against Pepper Wilt.


Journal

Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448

Informations de publication

Date de publication:
11 Oct 2023
Historique:
received: 27 12 2022
accepted: 02 09 2023
medline: 1 11 2023
pubmed: 11 10 2023
entrez: 11 10 2023
Statut: epublish

Résumé

In recent years, pepper wilt has emerged as a pivotal constraint on pepper yield augmentation. Bacillus velezensis S3-1, with a wide array of hosts, can be used as both a biocontrol agent and biofertilizer. Nonetheless, the precise mechanisms underpinning its employment in combating pepper wilt remain cloaked in ambiguity. In our study, we found that B. velezensis S3-1 could significantly inhibit Fusarium sp. F1

Identifiants

pubmed: 37819393
doi: 10.1007/s00284-023-03470-2
pii: 10.1007/s00284-023-03470-2
doi:

Substances chimiques

Oxidoreductases EC 1.-
Peroxidase EC 1.11.1.7

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

367

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Robles-Hernández L, Hernández-Huerta J, González-Franco AC et al (2015) Streptomyces PRIO41 as plant growth promoter of jalapeño pepper plants and as biocontrol agent of Fusarium. Phyton-Int J Exp Bot 84(2):253–261. https://doi.org/10.32604/phyton.2015.84.253
doi: 10.32604/phyton.2015.84.253
Demissie S, Megersa G, Meressa H, Muleta D (2020) Resistance levels of Ethiopian hot pepper (Capsicum spp.) varieties to a pathogenic Fusarium spp. and in vitro antagonistic effect of Trichoderma spp. Arch Phytopathol Plant Prot 54(11–12):647–663. https://doi.org/10.1080/03235408.2020.1853494
doi: 10.1080/03235408.2020.1853494
Irawati C, Mutaqin H, Suhartnon T, Widodo W (2020) The effect of application endophytic fungus Trichoderma spp. and Fusarium spp. to control bacterial wilt in chilli pepper. Walailak J Sci Technol 17(6):559–569. https://doi.org/10.48048/wjst.2020.3432
doi: 10.48048/wjst.2020.3432
Shternshis M, Belyaev A, Matchenko N et al (2015) Possibility of biological control of primocane fruiting raspberry disease caused by Fusarium sambucinum. Environ Sci Pollut Res 22(20):15656–15662. https://doi.org/10.1007/s11356-015-4763-5
doi: 10.1007/s11356-015-4763-5
Lu X, Zhou D, Chen X et al (2017) Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max, (L.) Merr.]. Plant Soil 416:53–66. https://doi.org/10.1007/s11104-017-3195-z
doi: 10.1007/s11104-017-3195-z
Si F (2014) Selection and application of a high-resistance strain with its study of resistance mechanism. Shanghai Normal University,Shanghai. https://www.blyun.com/login.jsp?backurl=https%3A%2F%2Fjour.blyun.com%2Fviews%2Fspecific%2F3004%2FthesisDetail.jsp%3FdxNumber%3D390108249660%26fenlei%3D%26d%3DFD013AF7D043E4CCFCD1242B136CF33A%26sw%3D%25E5%258F%25B8%25E6%2596%25B9%25E6%25AF%2585
Ling L (2021) Study on the control of cherry tomato harvest rot by Bacillus velezensis S3–1 and its fresh keeping effect. Shanghai Normal University, Shanghai. https://doi.org/10.27312/d.cnki.gshsu.2021.001338
doi: 10.27312/d.cnki.gshsu.2021.001338
Liu J, Hagberg I, Novitsky L et al (2014) Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens. Fungal Biol 118:855–861. https://doi.org/10.1016/j.funbio.2014.07.004
doi: 10.1016/j.funbio.2014.07.004 pubmed: 25442289
Huang Y, Li Y, Dong W et al (2019) Biocontrol of Rhizoctonia solani via induction of the defense mechanism and antimicrobial compounds produced by Bacillus subtilis SL-44 on pepper (Capsicum annuum L.). Front Microbiol 10:2676. https://doi.org/10.3389/fmicb.2019.02676
doi: 10.3389/fmicb.2019.02676 pubmed: 31849858 pmcid: 6892779
Chen L, Wang WH, Liu YP (2021) Root exudates in Rosa-microbe interaction contribute to the increased colonization of Bacillus velezensis CLA178. Nanjuing Nongye Daxue Xuebao 44(3):497–505. https://doi.org/10.7685/jnau.202008004
doi: 10.7685/jnau.202008004
Wu XL, Wang Y, Liu F (2020) Identification of Coptis chinensis root rot disease pathogenic Fusarium spp. fungi. China J Chin Mater Med 45(6):1323–1328. https://doi.org/10.19540/j.cnki.cjcmm.20200112.102
doi: 10.19540/j.cnki.cjcmm.20200112.102
Guo FL, Wu JP, Liu ZX et al (2015) Isolation and identification of main fungal pathogens in muskmelon in open field of Hubei province in summer. Agric Sci Technol 16:1711. https://doi.org/10.16175/j.cnki.1009-4229.2015.08.031
doi: 10.16175/j.cnki.1009-4229.2015.08.031
Zhang GH, Gu HX, Li XY et al (2023) Investigation and identification of fungal diseases of kiwifruit in Qiandongnan Prefecture. Plant Dis Pests 1:1–5. https://doi.org/10.19579/j.cnki.plant-d.p.2023.01.001
doi: 10.19579/j.cnki.plant-d.p.2023.01.001
Robson D, Kuhn J, Trinci P (1988) Effects of validamycin A on the morphology, growth and sporulation of Rhizoctonia cerealis, Fusarium culmorum and other fungi. J Gen Microbiol 134(12):3187–3194. https://doi.org/10.1099/00221287-134-12-3187
doi: 10.1099/00221287-134-12-3187 pubmed: 3269390
Correspondent B (1969) Botany: Retarded Ferns. Nature 221:1001. https://doi.org/10.1038/2211001a0
doi: 10.1038/2211001a0
Whipps M, Magan N (1987) Effects of nutrient status and water potential of media on fungal growth and antagonist-pathogen interactions1. Bull OEPP/EPPO Bull 17:581–591. https://doi.org/10.1111/j.1365-2338.1987.tb00078.x
doi: 10.1111/j.1365-2338.1987.tb00078.x
Kong G, Shin S, Kim H et al (2018) Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field. Front Plant Sci 9:90. https://doi.org/10.3389/fpls.2018.00090
doi: 10.3389/fpls.2018.00090 pubmed: 29527214 pmcid: 5829544
Abdelaziz A, Attia M, Salem M et al (2022) Cyanobacteria-mediated immune responses in pepper plants against Fusarium Wilt. Plants (Basel, Switzerland) 11(15):2049. https://doi.org/10.3390/plants11152049
doi: 10.3390/plants11152049 pubmed: 35956527
Mohammadi M, Aminipour M, Banihashemi Z (2004) Isozyme analysis and soluble mycelial protein pattern in iranian isolates of several formae speciales of Fusarium oxysporum. J Phytopathol 152(5):267–276. https://doi.org/10.1111/j.1439-0434.2004.00839.x
doi: 10.1111/j.1439-0434.2004.00839.x
Wu Y, Zhao C, Farmer J, Sun J (2015) Effects of bio-organic fertilizer on pepper growth and Fusarium wilt biocontrol. Sci Hortic-Amsterdam 193:114–120. https://doi.org/10.1016/j.scienta.2015.06.039
doi: 10.1016/j.scienta.2015.06.039
Silvar C, Merino F, Díaz J (2009) Resistance in pepper plants induced by Fusarium oxysporum f. sp. lycopersici involves different defence-related genes. Plant Biol 11(1):68–74. https://doi.org/10.1111/j.1438-8677.2008.00100.x
doi: 10.1111/j.1438-8677.2008.00100.x pubmed: 19121115
Luccas B, Eloísa A, Alessandra R et al (2021) Secondary metabolic profile as a tool for distinction and characterization of cultivars of black pepper (Piper nigrum L.) cultivated in Pará state, Brazil. Int J Mol Sci 22(2):890. https://doi.org/10.3390/ijms22020890
doi: 10.3390/ijms22020890
Płociniczak T, Sinkkonen A, Romantschuk M et al (2016) Rhizospheric bacterial strain Brevibacterium casei MH8a colonizes plant tissues and enhances Cd, Zn, Cu phytoextraction by white mustard. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00101
doi: 10.3389/fpls.2016.00101 pubmed: 26909087 pmcid: 4754770
Schreiter S, Sandmann M, Smalla K, Grosch R (2014) Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce. PLoS ONE 9(8):2014. https://doi.org/10.1371/journal.pone.0103726
doi: 10.1371/journal.pone.0103726
He BP, Hao XZ, Liu HY (2018) Analysis of growth-promotion, disease control effect and colonization capacity of Bacillus amyloliquefaciens B10–26 in sesame. J Henan Agric Sci 47(12):78–83. https://doi.org/10.15933/j.cnki.1004-3268.2018.12.012
doi: 10.15933/j.cnki.1004-3268.2018.12.012
Thakur P, Mathew D, Nazeem A et al (2014) Identification of allele specific AFLP markerslinked with bacterial wilt [Ralstonia solanacearum (Smith) Yabuuchi et al.] resistance in hot peppers (Capsicum annuum L.). Physiol Mol Plant Pathol 87:19–24. https://doi.org/10.1016/j.pmpp.2014.05.001
doi: 10.1016/j.pmpp.2014.05.001
Jayapala M, Navya P, Hariprasad G et al (2019) Rhizobacteria Bacillus spp. induce resistance against anthracnose disease in chili (Capsicum annuum L.) through activating host defense response. Egypt J Biol Pest Control 29(1):1–9. https://doi.org/10.1186/s41938-019-0148-2
doi: 10.1186/s41938-019-0148-2
El-kazzaz MK, Ghoneim KE, Agha MKM et al (2022) Suppression of pepper root rot and wilt diseases caused by Rhizoctonia solani and Fusarium oxysporum. Life. https://doi.org/10.3390/life12040587
doi: 10.3390/life12040587 pubmed: 35455078 pmcid: 9029026
Lozada DN, Nunez G, Lujan P et al (2021) Genomic regions and candidate genes linked with Phytophthora capsici root rot resistance in chile pepper (Capsicum annuum L.). BMC Plant Biol 21(1):601. https://doi.org/10.1186/s12870-021-03387-7
doi: 10.1186/s12870-021-03387-7 pubmed: 34922461 pmcid: 8684135
El-Nagar A, Abdelnaser E, Tran X et al (2022) Metal complexation of bis-chalcone derivatives enhances their efficacy against Fusarium Wilt disease, caused by Fusarium equiseti, via induction of antioxidant defense machinery. Plants (Basel, Switzerland) 11(18):2418. https://doi.org/10.3390/plants11182418
doi: 10.3390/plants11182418 pubmed: 36145818
Jin Q, Jiang Q, Zhao L et al (2017) Complete genome sequence of Bacillus velezensis S3–1, a potential biological pesticide with plant pathogen inhibiting and plant promoting capabilities. J Biotechnol 259:199–203. https://doi.org/10.1016/j.jbiotec.2017.07.011
doi: 10.1016/j.jbiotec.2017.07.011 pubmed: 28711664
Jin YQ, Zhu HF, Luo S et al (2019) Role of maize root exudates in promotion of colonization of Bacillus velezensis strain s3–1 in rhizosphere soil and root tissue. Curr Microbiol 76(7):855–862. https://doi.org/10.1007/s00284-019-01699-4
doi: 10.1007/s00284-019-01699-4 pubmed: 31073734
Xu Y, Wang LL, Liang WX et al (2021) Biocontrol potential of endophytic Bacillus velezensis strain QSE-21 against postharvest grey mould of fruit. Biol Control 161:104711. https://doi.org/10.1016/j.biocontrol.2021.104711
doi: 10.1016/j.biocontrol.2021.104711
Wang JH, Qiu JY, Yang XY et al (2022) Identification of lipopeptide iturin a produced by Bacillus amyloliquefaciens NCPSJ7 and its antifungal activities against Fusarium oxysporum f sp. niveum. Foods (Basel, Switzerland) 11(19):2996. https://doi.org/10.3390/foods11192996
doi: 10.3390/foods11192996 pubmed: 36230072
Chen Z, Zhao L, Dong YL et al (2021) The antagonistic mechanism of Bacillus velezensis ZW10 against rice blast disease: evaluation of ZW10 as a potential biopesticide. PLoS ONE 16(8):e0256807. https://doi.org/10.1371/journal.pone.0256807
doi: 10.1371/journal.pone.0256807 pubmed: 34449822 pmcid: 8396770
Tsikas D (2022) Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem 524:13–30. https://doi.org/10.1016/j.ab.2016.10.021
doi: 10.1016/j.ab.2016.10.021
Behiry SI, Soliman SA, Al-Mansori AN et al (2022) Chorisia speciosa extract induces systemic resistance against tomato root rot disease caused by Rhizoctonia solani. Agronomy-Basel 12(2309):2309. https://doi.org/10.3390/agronomy12102309
doi: 10.3390/agronomy12102309
Costaa J, Rodríguezb R, Santosb C et al (2020) Mycobiota in chilean chilli Capsicum annuum L. used for production of Merkén. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2020.108833
doi: 10.1016/j.ijfoodmicro.2020.108833
Jiang Y, Ji XL, Zhang YY et al (2022) Citral induces plant systemic acquired resistance against tobacco mosaic virus and plant fungal diseases. Ind Crop Prod 183:114948. https://doi.org/10.1016/j.indcrop.2022.114948
doi: 10.1016/j.indcrop.2022.114948
Manigundan K, Jerrine J, Radhakrishnan M et al (2022) Biocontrol streptomyces induces resistance to bacterial wilt by increasing defense-related enzyme activity in Solanum melongena L. Curr Microbiol 79(5):1–12. https://doi.org/10.1007/s00284-022-02832-6
doi: 10.1007/s00284-022-02832-6
El-Gendi H, Al-Askar A, Király L et al (2022) Foliar applications of Bacillus subtilis ha1 culture filtrate enhance tomato growth and induce systemic resistance against tobacco mosaic virus infection. Horticulturae 8(301):301. https://doi.org/10.3390/horticulturae8040301
doi: 10.3390/horticulturae8040301
Zhu HJ, Zhou H, Ren ZH et al (2022) Control of Magnaporthe oryzae and rice growth promotion by Bacillus subtilis JN005. J Plant Growth Regul 41(6):2319–2327. https://doi.org/10.1007/s00344-021-10444-w
doi: 10.1007/s00344-021-10444-w
Márquezabc R, Blancoab L, Arangurend Y (2020) Bacillus strain selection with plant growth-promoting mechanisms as potential elicitors of systemic resistance to gray mold in pepper plants. Saudi J Biol Sci 27(8):1913–1922. https://doi.org/10.1016/j.sjbs.2020.06.015
doi: 10.1016/j.sjbs.2020.06.015
Chalupowicz L, Manulis-Sasson S, Barash I et al (2021) Effect of plant systemic resistance elicited by biological and chemical inducers on the colonization of the lettuce and basil leaf apoplast by Salmonella enterica. Appl Environ Microb 87(24):e0115121. https://doi.org/10.1128/AEM.01151-21
doi: 10.1128/AEM.01151-21
Schnake A, Hartmann M, Schreiber S et al (2020) Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. J Exp Bot 71(20):6444–6459. https://doi.org/10.1093/jxb/eraa317
doi: 10.1093/jxb/eraa317 pubmed: 32725118 pmcid: 7586749
Elkobrosy D, Aseel D, Hafez E et al (2022) Quantitative detection of induced systemic resistance genes of potato roots upon ethylene treatment and cyst nematode, Globodera rostochiensis, infection during plant–nematode interactions. Saudi J Biol Sci 29(5):3617–3625. https://doi.org/10.1016/j.sjbs.2022.02.045
doi: 10.1016/j.sjbs.2022.02.045 pubmed: 35844398 pmcid: 9280246
He YW, Zhu ML, Huang JB et al (2022) Biocontrol potential of a Bacillus subtilis strain BJ-1 against the rice blast fungus Magnaporthe oryzae. Can J Plant Pathol 41(1):47–59
doi: 10.1080/07060661.2018.1564792
Li Y, Gu Y, Li J et al (2015) Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Front Microbiol 1:6. https://doi.org/10.3389/fmicb.2015.00883
doi: 10.3389/fmicb.2015.00883

Auteurs

Yongjie Fan (Y)

College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China.

Xingjie He (X)

College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China.

Jiawei Dai (J)

College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China.

Ning Yang (N)

College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China.

Qiuyan Jiang (Q)

College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China.

Zhaofeng Xu (Z)

College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China.

Xiaorong Tang (X)

College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China.

Yating Yu (Y)

College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China.

Ming Xiao (M)

College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China. xiaom88@shnu.edu.cn.

Articles similaires

Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases
Plant Diseases Paenibacillus Paenibacillus polymyxa Biological Control Agents Fusarium

Classifications MeSH