An RNA-Ligation-Based RACE-PAT Assay to Monitor Poly(A) Tail Length of mRNAs of Interest.

Deadenylation Poly(A) tail Polyadenylation RNA ligation RT-PCR Uridylation

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2024
Historique:
medline: 1 11 2023
pubmed: 12 10 2023
entrez: 12 10 2023
Statut: ppublish

Résumé

In eukaryotes, a non-templated poly-adenosine (poly(A)) tail is added co-transcriptionally to almost every messenger RNA (mRNA). The length of this poly(A) tail changes during the lifetime of mRNAs and has been shown in many circumstances to be an important factor controlling transcript fates. Yet, the measure of the length of this homogenous nucleotide sequence is technically challenging, making it difficult to assess its dynamic variation. In this chapter, we describe an RNA-ligation-based RACE-PAT (Rapid Amplification of cDNA End-Poly(A) Tail) assay to monitor the poly(A) tail length of mRNAs. In the first step, an RNA oligonucleotide is ligated to mRNA 3' ends providing an anchoring site to prime cDNA synthesis, avoiding the bias introduced by oligo(dT)-derived primers. Afterward, reverse transcription is performed with an anchor primer with a unique 5' extension. The choice of the oligonucleotide 3' end at this step allows further flexibility to amplify modified tails, for example, by uridylation. Next, short DNA fragments encompassing the poly(A) tails are amplified by Polymerase Chain Reaction (PCR) using as forward primer, a transcript-specific primer hybridizing close to the transcript polyadenylation signal, and as reverse primer, an oligonucleotide corresponding to the 5' extension of the primer used for cDNA synthesis, ensuring that only cDNAs are amplified. The resulting DNA fragments are then visualized after size fractionation by electrophoresis. This method does not provide exact nucleotide count and composition but has the advantage of allowing the processing of many samples in parallel at a low cost.

Identifiants

pubmed: 37824067
doi: 10.1007/978-1-0716-3481-3_7
doi:

Substances chimiques

RNA 63231-63-0
RNA, Messenger 0
DNA, Complementary 0
DNA 9007-49-2
DNA Primers 0
Poly A 24937-83-5

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

113-123

Informations de copyright

© 2024. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

Références

Tudek A, Schmid M, Jensen TH (2019) Escaping nuclear decay: the significance of mRNA export for gene expression. Curr Genet 65:473–476. https://doi.org/10.1007/s00294-018-0913-x
doi: 10.1007/s00294-018-0913-x pubmed: 30515529
Passmore LA, Coller J (2022) Roles of mRNA poly (A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Biol 23:93–106. https://doi.org/10.1038/s41580-021-00417-y
doi: 10.1038/s41580-021-00417-y pubmed: 34594027
Weill L, Belloc E, Bava FA, Mendez R (2012) Translational control by changes in poly (A) tail length: recycling mRNAs. Nat Struct Mol Biol 19:577–585. https://doi.org/10.1038/nsmb.2311
doi: 10.1038/nsmb.2311 pubmed: 22664985
Muhlrad D, Decker CJ, Parker R (1995) Turnover mechanisms of the stable yeast PGK1 mRNA. Mol Cell Biol 15:2145–2156. https://doi.org/10.1128/MCB.15.4.2145
doi: 10.1128/MCB.15.4.2145 pubmed: 7891709 pmcid: 230442
Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP (2014) Poly (A)-tail profiling reveals an embryonic switch in translational control. Nature 508:66–71. https://doi.org/10.1038/nature13007
doi: 10.1038/nature13007 pubmed: 24476825 pmcid: 4086860
Chang H, Lim J, Ha M, Kim VN (2014) TAIL-seq: genome-wide determination of poly (A) tail length and 3′ end modifications. Mol Cell 53:1044–1052. https://doi.org/10.1016/j.molcel.2014.02.007
doi: 10.1016/j.molcel.2014.02.007 pubmed: 24582499
Lim J, Kim D, Lee YS, Ha M, Lee M, Yeo J, Chang H, Song J, Ahn K, Kim VN (2018) Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science 361:701–704. https://doi.org/10.1126/science.aam5794
doi: 10.1126/science.aam5794 pubmed: 30026317
Brouze A, Szczepan Krawczyk P, Dziembowski A, Mroczek S (2022) Measuring the tail: methods for poly (A) tail profiling. Wiley Interdiscip Rev RNA 26:e1737. https://doi.org/10.1002/wrna.1737
doi: 10.1002/wrna.1737
Sallés FJ, Strickland S (1999) Analysis of poly (A) tail lengths by PCR: the PAT assay. Methods Mol Biol 118:441–448. https://doi.org/10.1385/1-59259-676-2:441
doi: 10.1385/1-59259-676-2:441 pubmed: 10549542
Jänicke A, Vancuylenberg J, Boag PR, Traven A, Beilharz TH (2012) ePAT: a simple method to tag adenylated RNA to measure poly (A)-tail length and other 3′ RACE applications. RNA 18:1289–1295. https://doi.org/10.1261/rna.031898.111
doi: 10.1261/rna.031898.111 pubmed: 22543866 pmcid: 3358650
Mauxion F, Faux C, Séraphin B (2008) The BTG2 protein is a general activator of mRNA deadenylation. EMBO J 27:1039–1048. https://doi.org/10.1038/emboj.2008.43
doi: 10.1038/emboj.2008.43 pubmed: 18337750 pmcid: 2323266
Mauxion F, Prève B, Séraphin B (2013) C2ORF29/CNOT11 and CNOT10 form a new module of the CCR4-NOT complex. RNA Biol 10:267–276. https://doi.org/10.4161/rna.23065
doi: 10.4161/rna.23065 pubmed: 23232451 pmcid: 3594285
Stupfler B, Birck C, Séraphin B, Mauxion F (2016) BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation. Nat Commun 7:10811. https://doi.org/10.1038/ncomms10811
doi: 10.1038/ncomms10811 pubmed: 26912148 pmcid: 4773420
Amine H, Ripin N, Sharma S, Stoecklin G, Allain FH, Séraphin B, Mauxion F (2021) A conserved motif in human BTG1 and BTG2 proteins mediates interaction with the poly (A) binding protein PABPC1 to stimulate mRNA deadenylation. RNA Biol 18:2450–2465. https://doi.org/10.1080/15476286.2021.1925476
doi: 10.1080/15476286.2021.1925476 pubmed: 34060423 pmcid: 8632095
Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551. https://doi.org/10.1073/pnas.89.12.5547
doi: 10.1073/pnas.89.12.5547 pubmed: 1319065 pmcid: 49329
Xu N, Loflin P, Chen CY, Shyu AB (1998) A broader role for AU-rich element-mediated mRNA turnover revealed by a new transcriptional pulse strategy. Nucleic Acids Res 26:558–565. https://doi.org/10.1093/nar/26.2.558
doi: 10.1093/nar/26.2.558 pubmed: 9421516 pmcid: 147286

Auteurs

Fabienne Mauxion (F)

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de Recherche Scientifique (CNRS) UMR 7104 - Institut National de Santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, Illkirch, France. mauxion@igbmc.fr.

Bertrand Séraphin (B)

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de Recherche Scientifique (CNRS) UMR 7104 - Institut National de Santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, Illkirch, France.

Articles similaires

Humans Endoribonucleases RNA, Messenger RNA Caps Gene Expression Regulation
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition
DNA Methylation Humans DNA Animals Machine Learning

Classifications MeSH