Serine proteases and metalloproteases are highly increased in irritable bowel syndrome Tunisian patients.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
16 10 2023
Historique:
received: 24 07 2023
accepted: 09 10 2023
medline: 23 10 2023
pubmed: 17 10 2023
entrez: 16 10 2023
Statut: epublish

Résumé

Serine proteases are involved in many biological processes and are associated with irritable bowel syndrome (IBS) pathology. An increase in serine protease activity has been widely reported in IBS patients. While most of the studies focused on host proteases, the contribution of microbial proteases are poorly studied. In the present study, we report the analysis of proteolytic activities in fecal samples from the first Tunisian cohort of IBS-M patients and healthy individuals. We demonstrated, for the first time, that metalloproteases activities were fourfold higher in fecal samples of IBS patients compared to controls. Of interest, the functional characterization of serine protease activities revealed a 50-fold increase in trypsin-like activities and a threefold in both elastase- and cathepsin G-like activities. Remarkably, we also showed a fourfold increase in proteinase 3-like activity in the case of IBS. This study also provides insight into the alteration of gut microbiota and its potential role in proteolytic modulation in IBS. Our results stressed the impact of the disequilibrium of serine proteases, metalloproteases and gut microbiota in IBS and the need of the further characterization of these targets to set out new therapeutic approaches.

Identifiants

pubmed: 37845280
doi: 10.1038/s41598-023-44454-3
pii: 10.1038/s41598-023-44454-3
pmc: PMC10579243
doi:

Substances chimiques

Serine Proteases EC 3.4.-
Endopeptidases EC 3.4.-
Metalloproteases EC 3.4.-
Pancreatic Elastase EC 3.4.21.36

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

17571

Informations de copyright

© 2023. Springer Nature Limited.

Références

Enck, P. et al. Irritable bowel syndrome. Nat. Rev. Dis. Prim. 2, 16014 (2016).
pubmed: 27159638 doi: 10.1038/nrdp.2016.14
Hu, Z. et al. The level and prevalence of depression and anxiety among patients with different subtypes of irritable bowel syndrome: A network meta-analysis. BMC Gastroenterol. 21, 1–18 (2021).
doi: 10.1186/s12876-020-01593-5
Lacy, B. E. & Patel, N. K. Rome criteria and a diagnostic approach to irritable bowel syndrome. J. Clin. Med. 6, 99–106 (2017).
pubmed: 29072609 pmcid: 5704116 doi: 10.3390/jcm6110099
Bosman, M. et al. The socioeconomic impact of irritable bowel syndrome: An analysis of direct and indirect healthcare costs. Clin. Gastroenterol. Hepatol. S1542–3565(23), 00076–00079 (2023).
Okeke, E. N. et al. Prevalence of irritable bowel syndrome: A community survey in an African population. Ann. Afr. Med. 8, 177–180 (2009).
pubmed: 19884695
Sperber, A. D. et al. The global prevalence of IBS in adults remains elusive due to the heterogeneity of studies: A Rome Foundation working team literature review. Gut 66, 1075–1082 (2017).
pubmed: 26818616 doi: 10.1136/gutjnl-2015-311240
Sperber, A. D. et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation Global Study. Gastroenterology. 160, 99–114 (2021).
pubmed: 32294476 doi: 10.1053/j.gastro.2020.04.014
Soares, R. L. S. Irritable bowel syndrome: A clinical review. World J. Gastroenterol. 20, 12144–12160 (2014).
pubmed: 25232249 pmcid: 4161800 doi: 10.3748/wjg.v20.i34.12144
Fukudo, S. et al. Evidence-based clinical practice guidelines for irritable bowel syndrome 2020. J. Gastroenterol. 56, 193–217 (2021).
pubmed: 33538894 pmcid: 7932982 doi: 10.1007/s00535-020-01746-z
Schmulson, M. J. & Drossman, D. A. What is new in Rome IV. J. Neurogastroenterol. Motil. 23, 151–163 (2017).
pubmed: 28274109 pmcid: 5383110 doi: 10.5056/jnm16214
El-Salhy, M. Recent developments in the pathophysiology of irritable bowel syndrome. World J. Gastroenterol. 21, 7621–7636 (2015).
pubmed: 26167065 pmcid: 4491952 doi: 10.3748/wjg.v21.i25.7621
Carco, C. et al. Increasing evidence that irritable bowel syndrome and functional gastrointestinal disorders have a microbial pathogenesis. Front. Cell. Infect. Microbiol. 10, 468–491 (2020).
pubmed: 33014892 pmcid: 7509092 doi: 10.3389/fcimb.2020.00468
Hou, J. J. et al. The relationship between gut microbiota and proteolytic activity in irritable bowel syndrome. Microb. Pathog. 157, 104995–105002 (2021).
pubmed: 34048892 doi: 10.1016/j.micpath.2021.104995
Biancheri, P., Sabatino, A., Corazza, G. R. & MacDonald, T. T. Proteases and the gut barrier. Cell Tissue Res. 3512, 269–280 (2012).
Cenac, N. et al. Role for protease activity in visceral pain in irritable bowel syndrome. J. Clin. Invest. 117, 636–647 (2007).
pubmed: 17304351 pmcid: 1794118 doi: 10.1172/JCI29255
Cenac, N. Protease-activated receptors as therapeutic targets in visceral pain. Curr. Neuropharmacol. 11, 598–605 (2013).
pubmed: 24396336 pmcid: 3849786 doi: 10.2174/1570159X113119990039
Gecse, K. et al. Increased faecal serine protease activity in diarrhoeic IBS patients: A colonic lumenal factor impairing colonic permeability and sensitivity. Gut 57, 591–599 (2008).
pubmed: 18194983 doi: 10.1136/gut.2007.140210
Róka, R. A. et al. A pilot study of fecal serine-protease activity: A pathophysiologic factor in diarrhea-predominant irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 5, 550–555 (2007).
pubmed: 17336590 doi: 10.1016/j.cgh.2006.12.004
Rolland-Fourcade, C. et al. Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut 66, 1767–1778 (2017).
pubmed: 28096305 doi: 10.1136/gutjnl-2016-312094
Annaházi, A. et al. Luminal cysteine-proteases degrade colonic tight junction structure and are responsible for abdominal pain in constipation-predominant IBS. Am. J. Gastroenterol. 108, 1322–1331 (2013).
pubmed: 23711626 doi: 10.1038/ajg.2013.152
Edogawa, S. et al. Serine proteases as luminal mediators of intestinal barrier dysfunction and symptom severity in irritable bowel syndrome. Gut 69, 62–73 (2020).
pubmed: 30923071 doi: 10.1136/gutjnl-2018-317416
Mishima, Y. & Ishihara, S. Molecular mechanisms of microbiota-mediated pathology in irritable bowel syndrome. Int. J. Mol. Sci. 21, 8664–8688 (2020).
pubmed: 33212919 pmcid: 7698457 doi: 10.3390/ijms21228664
Hanning, N. et al. Intestinal barrier dysfunction in irritable bowel syndrome: A systematic review. Therap. Adv. Gastroenterol. 14, 1756284821993586 (2021).
pubmed: 33717210 pmcid: 7925957 doi: 10.1177/1756284821993586
Wysocka, M. et al. The new fluorogenic substrates of neutrophil proteinase 3 optimized in prime site region. Anal. Biochem. 399, 196–201 (2010).
pubmed: 20074540 doi: 10.1016/j.ab.2010.01.007
Popow-Stellmaszyk, J. et al. A new proteinase 3 substrate with improved selectivity over human neutrophil elastase. Anal. Biochem. 442, 75–82 (2013).
pubmed: 23911525 doi: 10.1016/j.ab.2013.07.028
Seren, S. et al. Proteinase release from activated neutrophils in mechanically ventilated patients with non-COVID-19 and COVID-19 pneumonia. Eur. Respir. J. 57, 2003755 (2021).
pubmed: 33419887 pmcid: 8082325 doi: 10.1183/13993003.03755-2020
Haskamp, S. et al. Myeloperoxidase modulates inflammation in generalized pustular psoriasis and additional rare pustular skin diseases. Am. J. Hum. Genet. 107, 527–538 (2020).
pubmed: 32758447 pmcid: 7477008 doi: 10.1016/j.ajhg.2020.07.001
Godon, J. J., Zumstein, E., Dabert, P., Habouzit, F. & Moletta, R. Microbial 16S rDNA diversity in an anaerobic digester. Water Sci. Technol. 36, 49–55 (1997).
doi: 10.2166/wst.1997.0574
Escudié, F. et al. FROGS: Find, rapidly, OTUs with galaxy solution. Bioinformatics 34, 1287–1294 (2017).
doi: 10.1093/bioinformatics/btx791
Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252 (1964).
doi: 10.1080/00401706.1964.10490181
Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 9, 811–818 (1990).
pubmed: 2218183 doi: 10.1002/sim.4780090710
Pittayanon, R. et al. Gut microbiota in patients with irritable bowel syndrome—A systematic review. Gastroenterology 157, 97–108 (2019).
pubmed: 30940523 doi: 10.1053/j.gastro.2019.03.049
Agnello, M. et al. Gut microbiome composition and risk factors in a large cross-sectional IBS cohort. BMJ Open Gastroenterol. 7, e000345 (2020).
pubmed: 32518661 pmcid: 7254124 doi: 10.1136/bmjgast-2019-000345
Richard, M. L. & Sokol, H. The gut mycobiota: Insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 16, 331–345 (2019).
pubmed: 30824884
Thiel, I. A. M. et al. Genetic and phenotypic diversity of fecal Candida albicans strains in irritable bowel syndrome. Sci. Rep. 12, 5391–5405 (2022).
pubmed: 35354908 pmcid: 8967921 doi: 10.1038/s41598-022-09436-x
Ray, K. Unravelling the genetics of irritable bowel syndrome. Nat. Rev. Gastroenterol. Hepatol. 19, 5 (2022).
pubmed: 34782784 doi: 10.1038/s41575-021-00556-9
Eijsbouts, C. et al. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nat. Genet. 53, 1543–1552 (2021).
pubmed: 34741163 pmcid: 8571093 doi: 10.1038/s41588-021-00950-8
Rajilić-Stojanovic, M. et al. Intestinal microbiota and diet in IBS: Causes, consequences, or epiphenomena?. Am. J. Gastroenterol. 110, 278–287 (2015).
pubmed: 25623659 pmcid: 4317767 doi: 10.1038/ajg.2014.427
Ceuleers, H. et al. Visceral hypersensitivity in inflammatory bowel diseases and irritable bowel syndrome: The role of proteases. World J. Gastroenterol. 22, 10275–10286 (2016).
pubmed: 28058009 pmcid: 5175241 doi: 10.3748/wjg.v22.i47.10275
Vergnolle, N. Protease inhibition as new therapeutic strategy for GI diseases. Gut 65, 1215–1224 (2016).
pubmed: 27196587 doi: 10.1136/gutjnl-2015-309147
Mariaule, V. et al. Digestive inflammation: Role of proteolytic dysregulation. Int. J. Mol. Sci. 22, 2817–2834 (2021).
pubmed: 33802197 pmcid: 7999743 doi: 10.3390/ijms22062817
Mkaouar, H. et al. Gut serpinome: Emerging evidence in IBD. Int. J. Mol. Sci. 22, 6088–6103 (2021).
pubmed: 34200095 pmcid: 8201313 doi: 10.3390/ijms22116088
Kriaa, A. et al. Serine proteases at the cutting edge of IBD: Focus on gastrointestinal inflammation. FASEB J. 34, 7270–7282 (2020).
pubmed: 32307770 doi: 10.1096/fj.202000031RR
Neumann, U. et al. Characterization of Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2, a fluorogenic substrate with increased specificity constants for collagenases and tumor necrosis factor converting enzyme. Anal. Biochem. 328, 166–173 (2004).
pubmed: 15113693 doi: 10.1016/j.ab.2003.12.035
Annaházi, A. et al. Fecal proteases from diarrheic-IBS and ulcerative colitis patients exert opposite effect on visceral sensitivity in mice. Pain 144, 209–217 (2009).
pubmed: 19450926 doi: 10.1016/j.pain.2009.04.017
Pezzato, E. et al. Proteinase-3 directly activates MMP-2 and degrades gelatin and Matrigel; differential inhibition by (-)epigallocatechin-3-gallate. J. Leukoc. Biol. 74, 88–94 (2003).
pubmed: 12832446 doi: 10.1189/jlb.0203086
Shamamian, P. et al. Activation of progelatinase A (MMP-2) by neutrophil elastase, cathepsin G, and proteinase-3: A role for inflammatory cells in tumor invasion and angiogenesis. J. Cell Physiol. 189, 197–206 (2001).
pubmed: 11598905 doi: 10.1002/jcp.10014
Jablaoui, A. et al. Fecal serine protease profiling in inflammatory bowel diseases. Front. Cell Infect. Microbiol. 10, 21–27 (2020).
pubmed: 32117798 pmcid: 7011180 doi: 10.3389/fcimb.2020.00021
Lakhan, S. E. & Avramut, M. Matrix metalloproteinases in neuropathic pain and migraine: Friends, enemies, and therapeutic targets. Pain Res. Treat. 2012, 952906 (2012).
pubmed: 22970361 pmcid: 3434407
Escolano-Lozano, F. et al. Local and systemic expression pattern of MMP-2 and MMP-9 in complex regional pain syndrome. J. Pain 22, 1294–1302 (2021).
pubmed: 33892152 doi: 10.1016/j.jpain.2021.04.002
Meijer, M. J. et al. Increased mucosal matrix metalloproteinase-1, -2, -3 and -9 activity in patients with inflammatory bowel disease and the relation with Crohn’s disease phenotype. Dig. Liver Dis. 39, 733–739 (2007).
pubmed: 17602907 doi: 10.1016/j.dld.2007.05.010
Gao, Q. et al. Expression of matrix metalloproteinases-2 and -9 in intestinal tissue of patients with inflammatory bowel diseases. Dig. Liver Dis. 37, 584–592 (2005).
pubmed: 15869913 doi: 10.1016/j.dld.2005.02.011
Mei, L. et al. Gut microbiota composition and functional prediction in diarrhea-predominant irritable bowel syndrome. BMC Gastroenterol. 21, 105–116 (2021).
pubmed: 33663411 pmcid: 7934555 doi: 10.1186/s12876-021-01693-w
Su, Q. et al. Gut microbiome signatures reflect different subtypes of irritable bowel syndrome. Gut Microbes 15, 2157697–2157709 (2023).
pubmed: 36573834 doi: 10.1080/19490976.2022.2157697
Duan, R., Zhu, S., Wang, B. & Duan, L. Alterations of gut microbiota in patients with irritable bowel syndrome based on 16S rRNA-targeted sequencing: A systematic review. Clin. Transl. Gastroenterol. 2, e00012 (2019).
doi: 10.14309/ctg.0000000000000012
Jeffery, I. B. et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61, 997–1006 (2012).
pubmed: 22180058 doi: 10.1136/gutjnl-2011-301501
Tap, J. et al. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology 152, 111-123.e8 (2017).
pubmed: 27725146 doi: 10.1053/j.gastro.2016.09.049
Jalanka-Tuovinen, J. et al. Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut 63, 1737–1745 (2014).
pubmed: 24310267 doi: 10.1136/gutjnl-2013-305994
Pan, R. et al. Crosstalk between the gut microbiome and colonic motility in chronic constipation: Potential mechanisms and microbiota modulation. Nutrients 14, 3704–3731 (2022).
pubmed: 36145079 pmcid: 9505360 doi: 10.3390/nu14183704
Pozuelo, M. et al. Reduction of butyrate- and methane-producing microorganisms in patients with Irritable Bowel Syndrome. Sci. Rep. 4, 12693–12704 (2015).
doi: 10.1038/srep12693
Waters, J. L. & Ley, R. E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 17, 83–93 (2019).
pubmed: 31660948 pmcid: 6819567 doi: 10.1186/s12915-019-0699-4
Giamarellos-Bourboulis, E. et al. Molecular assessment of differences in the duodenal microbiome in subjects with irritable bowel syndrome. Scand. J. Gastroenterol. 50, 1076–1087 (2015).
pubmed: 25865706 doi: 10.3109/00365521.2015.1027261
Rajilić-Stojanović, M. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792–1801 (2011).
pubmed: 21820992 doi: 10.1053/j.gastro.2011.07.043
Su, T. et al. Altered intestinal microbiota with increased abundance of Prevotella is associated with high risk of diarrhea-predominant irritable bowel syndrome. Gastroenterol. Res. Pract. 2018, 6961783 (2018).
pubmed: 29967640 pmcid: 6008816 doi: 10.1155/2018/6961783
Lo Presti, A. et al. Phylogenetic analysis of Prevotella copri from fecal and mucosal microbiota of IBS and IBD patients. Therap. Adv. Gastroenterol. 16, 17562848221136328 (2023).
pubmed: 36644130 pmcid: 9837282 doi: 10.1177/17562848221136328
Carroll, I. M. et al. Fecal protease activity is associated with compositional alterations in the intestinal microbiota. PLoS ONE 8, e78017 (2013).
pubmed: 24147109 pmcid: 3798377 doi: 10.1371/journal.pone.0078017
Lee, J. Y., Park, J. Y., Kim, Y. & Kang, C. H. Protective effect of Bifidobacterium animalis subs. lactis MG741 as probiotics against UVB-exposed fibroblasts and hairless mice. Microorganisms 10, 2343–2353 (2022).
pubmed: 36557596 pmcid: 9782240 doi: 10.3390/microorganisms10122343
An, J., Kim, H. & Yang, K. M. An aqueous extract of a bifidobacterium species induces apoptosis and inhibits invasiveness of non-small cell lung cancer cells. J. Microbiol. Biotechnol. 30, 885–893 (2020).
pubmed: 32238777 doi: 10.4014/jmb.1912.12054

Auteurs

Souha Soussou (S)

Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, 78350, Jouy-en-Josas, France.
Laboratory of Molecular Biology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.

Amin Jablaoui (A)

Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, 78350, Jouy-en-Josas, France.

Vincent Mariaule (V)

Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, 78350, Jouy-en-Josas, France.

Aicha Kriaa (A)

Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, 78350, Jouy-en-Josas, France.

Houda Boudaya (H)

Laboratory of Molecular Biology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.

Magdalena Wysocka (M)

Faculty of Chemistry, University of Gdansk, Gdańsk, Poland.

Ali Amouri (A)

Department of Gastroenterology, Hedi Chaker University Hospital, Sfax, Tunisia.

Ali Gargouri (A)

Laboratory of Molecular Biology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.

Adam Lesner (A)

Faculty of Chemistry, University of Gdansk, Gdańsk, Poland.

Emmanuelle Maguin (E)

Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, 78350, Jouy-en-Josas, France.

Moez Rhimi (M)

Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, 78350, Jouy-en-Josas, France. moez.rhimi@inrae.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH