Serine proteases and metalloproteases are highly increased in irritable bowel syndrome Tunisian patients.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
16 10 2023
16 10 2023
Historique:
received:
24
07
2023
accepted:
09
10
2023
medline:
23
10
2023
pubmed:
17
10
2023
entrez:
16
10
2023
Statut:
epublish
Résumé
Serine proteases are involved in many biological processes and are associated with irritable bowel syndrome (IBS) pathology. An increase in serine protease activity has been widely reported in IBS patients. While most of the studies focused on host proteases, the contribution of microbial proteases are poorly studied. In the present study, we report the analysis of proteolytic activities in fecal samples from the first Tunisian cohort of IBS-M patients and healthy individuals. We demonstrated, for the first time, that metalloproteases activities were fourfold higher in fecal samples of IBS patients compared to controls. Of interest, the functional characterization of serine protease activities revealed a 50-fold increase in trypsin-like activities and a threefold in both elastase- and cathepsin G-like activities. Remarkably, we also showed a fourfold increase in proteinase 3-like activity in the case of IBS. This study also provides insight into the alteration of gut microbiota and its potential role in proteolytic modulation in IBS. Our results stressed the impact of the disequilibrium of serine proteases, metalloproteases and gut microbiota in IBS and the need of the further characterization of these targets to set out new therapeutic approaches.
Identifiants
pubmed: 37845280
doi: 10.1038/s41598-023-44454-3
pii: 10.1038/s41598-023-44454-3
pmc: PMC10579243
doi:
Substances chimiques
Serine Proteases
EC 3.4.-
Endopeptidases
EC 3.4.-
Metalloproteases
EC 3.4.-
Pancreatic Elastase
EC 3.4.21.36
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
17571Informations de copyright
© 2023. Springer Nature Limited.
Références
Enck, P. et al. Irritable bowel syndrome. Nat. Rev. Dis. Prim. 2, 16014 (2016).
pubmed: 27159638
doi: 10.1038/nrdp.2016.14
Hu, Z. et al. The level and prevalence of depression and anxiety among patients with different subtypes of irritable bowel syndrome: A network meta-analysis. BMC Gastroenterol. 21, 1–18 (2021).
doi: 10.1186/s12876-020-01593-5
Lacy, B. E. & Patel, N. K. Rome criteria and a diagnostic approach to irritable bowel syndrome. J. Clin. Med. 6, 99–106 (2017).
pubmed: 29072609
pmcid: 5704116
doi: 10.3390/jcm6110099
Bosman, M. et al. The socioeconomic impact of irritable bowel syndrome: An analysis of direct and indirect healthcare costs. Clin. Gastroenterol. Hepatol. S1542–3565(23), 00076–00079 (2023).
Okeke, E. N. et al. Prevalence of irritable bowel syndrome: A community survey in an African population. Ann. Afr. Med. 8, 177–180 (2009).
pubmed: 19884695
Sperber, A. D. et al. The global prevalence of IBS in adults remains elusive due to the heterogeneity of studies: A Rome Foundation working team literature review. Gut 66, 1075–1082 (2017).
pubmed: 26818616
doi: 10.1136/gutjnl-2015-311240
Sperber, A. D. et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation Global Study. Gastroenterology. 160, 99–114 (2021).
pubmed: 32294476
doi: 10.1053/j.gastro.2020.04.014
Soares, R. L. S. Irritable bowel syndrome: A clinical review. World J. Gastroenterol. 20, 12144–12160 (2014).
pubmed: 25232249
pmcid: 4161800
doi: 10.3748/wjg.v20.i34.12144
Fukudo, S. et al. Evidence-based clinical practice guidelines for irritable bowel syndrome 2020. J. Gastroenterol. 56, 193–217 (2021).
pubmed: 33538894
pmcid: 7932982
doi: 10.1007/s00535-020-01746-z
Schmulson, M. J. & Drossman, D. A. What is new in Rome IV. J. Neurogastroenterol. Motil. 23, 151–163 (2017).
pubmed: 28274109
pmcid: 5383110
doi: 10.5056/jnm16214
El-Salhy, M. Recent developments in the pathophysiology of irritable bowel syndrome. World J. Gastroenterol. 21, 7621–7636 (2015).
pubmed: 26167065
pmcid: 4491952
doi: 10.3748/wjg.v21.i25.7621
Carco, C. et al. Increasing evidence that irritable bowel syndrome and functional gastrointestinal disorders have a microbial pathogenesis. Front. Cell. Infect. Microbiol. 10, 468–491 (2020).
pubmed: 33014892
pmcid: 7509092
doi: 10.3389/fcimb.2020.00468
Hou, J. J. et al. The relationship between gut microbiota and proteolytic activity in irritable bowel syndrome. Microb. Pathog. 157, 104995–105002 (2021).
pubmed: 34048892
doi: 10.1016/j.micpath.2021.104995
Biancheri, P., Sabatino, A., Corazza, G. R. & MacDonald, T. T. Proteases and the gut barrier. Cell Tissue Res. 3512, 269–280 (2012).
Cenac, N. et al. Role for protease activity in visceral pain in irritable bowel syndrome. J. Clin. Invest. 117, 636–647 (2007).
pubmed: 17304351
pmcid: 1794118
doi: 10.1172/JCI29255
Cenac, N. Protease-activated receptors as therapeutic targets in visceral pain. Curr. Neuropharmacol. 11, 598–605 (2013).
pubmed: 24396336
pmcid: 3849786
doi: 10.2174/1570159X113119990039
Gecse, K. et al. Increased faecal serine protease activity in diarrhoeic IBS patients: A colonic lumenal factor impairing colonic permeability and sensitivity. Gut 57, 591–599 (2008).
pubmed: 18194983
doi: 10.1136/gut.2007.140210
Róka, R. A. et al. A pilot study of fecal serine-protease activity: A pathophysiologic factor in diarrhea-predominant irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 5, 550–555 (2007).
pubmed: 17336590
doi: 10.1016/j.cgh.2006.12.004
Rolland-Fourcade, C. et al. Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut 66, 1767–1778 (2017).
pubmed: 28096305
doi: 10.1136/gutjnl-2016-312094
Annaházi, A. et al. Luminal cysteine-proteases degrade colonic tight junction structure and are responsible for abdominal pain in constipation-predominant IBS. Am. J. Gastroenterol. 108, 1322–1331 (2013).
pubmed: 23711626
doi: 10.1038/ajg.2013.152
Edogawa, S. et al. Serine proteases as luminal mediators of intestinal barrier dysfunction and symptom severity in irritable bowel syndrome. Gut 69, 62–73 (2020).
pubmed: 30923071
doi: 10.1136/gutjnl-2018-317416
Mishima, Y. & Ishihara, S. Molecular mechanisms of microbiota-mediated pathology in irritable bowel syndrome. Int. J. Mol. Sci. 21, 8664–8688 (2020).
pubmed: 33212919
pmcid: 7698457
doi: 10.3390/ijms21228664
Hanning, N. et al. Intestinal barrier dysfunction in irritable bowel syndrome: A systematic review. Therap. Adv. Gastroenterol. 14, 1756284821993586 (2021).
pubmed: 33717210
pmcid: 7925957
doi: 10.1177/1756284821993586
Wysocka, M. et al. The new fluorogenic substrates of neutrophil proteinase 3 optimized in prime site region. Anal. Biochem. 399, 196–201 (2010).
pubmed: 20074540
doi: 10.1016/j.ab.2010.01.007
Popow-Stellmaszyk, J. et al. A new proteinase 3 substrate with improved selectivity over human neutrophil elastase. Anal. Biochem. 442, 75–82 (2013).
pubmed: 23911525
doi: 10.1016/j.ab.2013.07.028
Seren, S. et al. Proteinase release from activated neutrophils in mechanically ventilated patients with non-COVID-19 and COVID-19 pneumonia. Eur. Respir. J. 57, 2003755 (2021).
pubmed: 33419887
pmcid: 8082325
doi: 10.1183/13993003.03755-2020
Haskamp, S. et al. Myeloperoxidase modulates inflammation in generalized pustular psoriasis and additional rare pustular skin diseases. Am. J. Hum. Genet. 107, 527–538 (2020).
pubmed: 32758447
pmcid: 7477008
doi: 10.1016/j.ajhg.2020.07.001
Godon, J. J., Zumstein, E., Dabert, P., Habouzit, F. & Moletta, R. Microbial 16S rDNA diversity in an anaerobic digester. Water Sci. Technol. 36, 49–55 (1997).
doi: 10.2166/wst.1997.0574
Escudié, F. et al. FROGS: Find, rapidly, OTUs with galaxy solution. Bioinformatics 34, 1287–1294 (2017).
doi: 10.1093/bioinformatics/btx791
Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252 (1964).
doi: 10.1080/00401706.1964.10490181
Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 9, 811–818 (1990).
pubmed: 2218183
doi: 10.1002/sim.4780090710
Pittayanon, R. et al. Gut microbiota in patients with irritable bowel syndrome—A systematic review. Gastroenterology 157, 97–108 (2019).
pubmed: 30940523
doi: 10.1053/j.gastro.2019.03.049
Agnello, M. et al. Gut microbiome composition and risk factors in a large cross-sectional IBS cohort. BMJ Open Gastroenterol. 7, e000345 (2020).
pubmed: 32518661
pmcid: 7254124
doi: 10.1136/bmjgast-2019-000345
Richard, M. L. & Sokol, H. The gut mycobiota: Insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 16, 331–345 (2019).
pubmed: 30824884
Thiel, I. A. M. et al. Genetic and phenotypic diversity of fecal Candida albicans strains in irritable bowel syndrome. Sci. Rep. 12, 5391–5405 (2022).
pubmed: 35354908
pmcid: 8967921
doi: 10.1038/s41598-022-09436-x
Ray, K. Unravelling the genetics of irritable bowel syndrome. Nat. Rev. Gastroenterol. Hepatol. 19, 5 (2022).
pubmed: 34782784
doi: 10.1038/s41575-021-00556-9
Eijsbouts, C. et al. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nat. Genet. 53, 1543–1552 (2021).
pubmed: 34741163
pmcid: 8571093
doi: 10.1038/s41588-021-00950-8
Rajilić-Stojanovic, M. et al. Intestinal microbiota and diet in IBS: Causes, consequences, or epiphenomena?. Am. J. Gastroenterol. 110, 278–287 (2015).
pubmed: 25623659
pmcid: 4317767
doi: 10.1038/ajg.2014.427
Ceuleers, H. et al. Visceral hypersensitivity in inflammatory bowel diseases and irritable bowel syndrome: The role of proteases. World J. Gastroenterol. 22, 10275–10286 (2016).
pubmed: 28058009
pmcid: 5175241
doi: 10.3748/wjg.v22.i47.10275
Vergnolle, N. Protease inhibition as new therapeutic strategy for GI diseases. Gut 65, 1215–1224 (2016).
pubmed: 27196587
doi: 10.1136/gutjnl-2015-309147
Mariaule, V. et al. Digestive inflammation: Role of proteolytic dysregulation. Int. J. Mol. Sci. 22, 2817–2834 (2021).
pubmed: 33802197
pmcid: 7999743
doi: 10.3390/ijms22062817
Mkaouar, H. et al. Gut serpinome: Emerging evidence in IBD. Int. J. Mol. Sci. 22, 6088–6103 (2021).
pubmed: 34200095
pmcid: 8201313
doi: 10.3390/ijms22116088
Kriaa, A. et al. Serine proteases at the cutting edge of IBD: Focus on gastrointestinal inflammation. FASEB J. 34, 7270–7282 (2020).
pubmed: 32307770
doi: 10.1096/fj.202000031RR
Neumann, U. et al. Characterization of Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2, a fluorogenic substrate with increased specificity constants for collagenases and tumor necrosis factor converting enzyme. Anal. Biochem. 328, 166–173 (2004).
pubmed: 15113693
doi: 10.1016/j.ab.2003.12.035
Annaházi, A. et al. Fecal proteases from diarrheic-IBS and ulcerative colitis patients exert opposite effect on visceral sensitivity in mice. Pain 144, 209–217 (2009).
pubmed: 19450926
doi: 10.1016/j.pain.2009.04.017
Pezzato, E. et al. Proteinase-3 directly activates MMP-2 and degrades gelatin and Matrigel; differential inhibition by (-)epigallocatechin-3-gallate. J. Leukoc. Biol. 74, 88–94 (2003).
pubmed: 12832446
doi: 10.1189/jlb.0203086
Shamamian, P. et al. Activation of progelatinase A (MMP-2) by neutrophil elastase, cathepsin G, and proteinase-3: A role for inflammatory cells in tumor invasion and angiogenesis. J. Cell Physiol. 189, 197–206 (2001).
pubmed: 11598905
doi: 10.1002/jcp.10014
Jablaoui, A. et al. Fecal serine protease profiling in inflammatory bowel diseases. Front. Cell Infect. Microbiol. 10, 21–27 (2020).
pubmed: 32117798
pmcid: 7011180
doi: 10.3389/fcimb.2020.00021
Lakhan, S. E. & Avramut, M. Matrix metalloproteinases in neuropathic pain and migraine: Friends, enemies, and therapeutic targets. Pain Res. Treat. 2012, 952906 (2012).
pubmed: 22970361
pmcid: 3434407
Escolano-Lozano, F. et al. Local and systemic expression pattern of MMP-2 and MMP-9 in complex regional pain syndrome. J. Pain 22, 1294–1302 (2021).
pubmed: 33892152
doi: 10.1016/j.jpain.2021.04.002
Meijer, M. J. et al. Increased mucosal matrix metalloproteinase-1, -2, -3 and -9 activity in patients with inflammatory bowel disease and the relation with Crohn’s disease phenotype. Dig. Liver Dis. 39, 733–739 (2007).
pubmed: 17602907
doi: 10.1016/j.dld.2007.05.010
Gao, Q. et al. Expression of matrix metalloproteinases-2 and -9 in intestinal tissue of patients with inflammatory bowel diseases. Dig. Liver Dis. 37, 584–592 (2005).
pubmed: 15869913
doi: 10.1016/j.dld.2005.02.011
Mei, L. et al. Gut microbiota composition and functional prediction in diarrhea-predominant irritable bowel syndrome. BMC Gastroenterol. 21, 105–116 (2021).
pubmed: 33663411
pmcid: 7934555
doi: 10.1186/s12876-021-01693-w
Su, Q. et al. Gut microbiome signatures reflect different subtypes of irritable bowel syndrome. Gut Microbes 15, 2157697–2157709 (2023).
pubmed: 36573834
doi: 10.1080/19490976.2022.2157697
Duan, R., Zhu, S., Wang, B. & Duan, L. Alterations of gut microbiota in patients with irritable bowel syndrome based on 16S rRNA-targeted sequencing: A systematic review. Clin. Transl. Gastroenterol. 2, e00012 (2019).
doi: 10.14309/ctg.0000000000000012
Jeffery, I. B. et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61, 997–1006 (2012).
pubmed: 22180058
doi: 10.1136/gutjnl-2011-301501
Tap, J. et al. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology 152, 111-123.e8 (2017).
pubmed: 27725146
doi: 10.1053/j.gastro.2016.09.049
Jalanka-Tuovinen, J. et al. Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut 63, 1737–1745 (2014).
pubmed: 24310267
doi: 10.1136/gutjnl-2013-305994
Pan, R. et al. Crosstalk between the gut microbiome and colonic motility in chronic constipation: Potential mechanisms and microbiota modulation. Nutrients 14, 3704–3731 (2022).
pubmed: 36145079
pmcid: 9505360
doi: 10.3390/nu14183704
Pozuelo, M. et al. Reduction of butyrate- and methane-producing microorganisms in patients with Irritable Bowel Syndrome. Sci. Rep. 4, 12693–12704 (2015).
doi: 10.1038/srep12693
Waters, J. L. & Ley, R. E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 17, 83–93 (2019).
pubmed: 31660948
pmcid: 6819567
doi: 10.1186/s12915-019-0699-4
Giamarellos-Bourboulis, E. et al. Molecular assessment of differences in the duodenal microbiome in subjects with irritable bowel syndrome. Scand. J. Gastroenterol. 50, 1076–1087 (2015).
pubmed: 25865706
doi: 10.3109/00365521.2015.1027261
Rajilić-Stojanović, M. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792–1801 (2011).
pubmed: 21820992
doi: 10.1053/j.gastro.2011.07.043
Su, T. et al. Altered intestinal microbiota with increased abundance of Prevotella is associated with high risk of diarrhea-predominant irritable bowel syndrome. Gastroenterol. Res. Pract. 2018, 6961783 (2018).
pubmed: 29967640
pmcid: 6008816
doi: 10.1155/2018/6961783
Lo Presti, A. et al. Phylogenetic analysis of Prevotella copri from fecal and mucosal microbiota of IBS and IBD patients. Therap. Adv. Gastroenterol. 16, 17562848221136328 (2023).
pubmed: 36644130
pmcid: 9837282
doi: 10.1177/17562848221136328
Carroll, I. M. et al. Fecal protease activity is associated with compositional alterations in the intestinal microbiota. PLoS ONE 8, e78017 (2013).
pubmed: 24147109
pmcid: 3798377
doi: 10.1371/journal.pone.0078017
Lee, J. Y., Park, J. Y., Kim, Y. & Kang, C. H. Protective effect of Bifidobacterium animalis subs. lactis MG741 as probiotics against UVB-exposed fibroblasts and hairless mice. Microorganisms 10, 2343–2353 (2022).
pubmed: 36557596
pmcid: 9782240
doi: 10.3390/microorganisms10122343
An, J., Kim, H. & Yang, K. M. An aqueous extract of a bifidobacterium species induces apoptosis and inhibits invasiveness of non-small cell lung cancer cells. J. Microbiol. Biotechnol. 30, 885–893 (2020).
pubmed: 32238777
doi: 10.4014/jmb.1912.12054