Immunolabel-First-Expand-Later Expansion Microscopy Approach Using Stable STED Dyes.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2024
Historique:
medline: 1 11 2023
pubmed: 19 10 2023
entrez: 19 10 2023
Statut: ppublish

Résumé

Multiple expansion microscopy approaches have been successfully used in the analysis of centrioles, centrosomes, and cilia, helping to reveal the localization of numerous centrosomal and ciliary proteins at nanoscale resolution. In this chapter, we describe the use of two stable STED dyes in combination with expansion microscopy, which allows the robust detection by conventional and STED microscopy of proteins immunolabeled prior to sample expansion. We demonstrate the stability of these dyes during the crosslinking, polymerization, and denaturation steps of an expansion protocol thereby allowing their use in an immunolabel-first-expand-later approach. Our protocol overcomes the frequent technical limitation of poor, unreproducible binding of primary antibodies to proteins after denaturation. We demonstrate the applicability of this approach by analyzing both a centriole appendage protein Cep164 and a ciliary protein ARL13B.

Identifiants

pubmed: 37856019
doi: 10.1007/978-1-0716-3507-0_5
doi:

Substances chimiques

Coloring Agents 0
Antibodies 0

Types de publication

Journal Article Research Support, N.I.H., Intramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

89-101

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Bornens M (2021) Centrosome organization and functions. Curr Opin Struct Biol 66:199–206
doi: 10.1016/j.sbi.2020.11.002 pubmed: 33338884
Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139(4):663–678
doi: 10.1016/j.cell.2009.10.036 pubmed: 19914163
Arquint C, Gabryjonczyk AM, Nigg EA (2014) Centrosomes as signalling centres. Philos Trans R Soc Lond Ser B Biol Sci 369(1650):20130464
doi: 10.1098/rstb.2013.0464
Gonczy P, Hatzopoulos GN (2019) Centriole assembly at a glance. J Cell Sci 132(4):jcs228833
doi: 10.1242/jcs.228833 pubmed: 30787112
Sullenberger C et al (2020) With age comes maturity: biochemical and structural transformation of a human centriole in the making. Cell 9(6):1429
doi: 10.3390/cells9061429
Tanos BE et al (2013) Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev 27(2):163–168
doi: 10.1101/gad.207043.112 pubmed: 23348840 pmcid: 3566309
Delgehyr N, Sillibourne J, Bornens M (2005) Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J Cell Sci 118(Pt 8):1565–1575
doi: 10.1242/jcs.02302 pubmed: 15784680
Bowler M et al (2019) High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy. Nat Commun 10(1):993
doi: 10.1038/s41467-018-08216-4 pubmed: 30824690 pmcid: 6397210
Vorobjev IA, Chentsov Yu S (1982) Centrioles in the cell cycle. I. Epithelial cells. J Cell Biol 93(3):938–949
doi: 10.1083/jcb.93.3.938 pubmed: 7119006
Gaudin N et al (2022) Evolutionary conservation of centriole rotational asymmetry in the human centrosome. eLife 11:e72382
doi: 10.7554/eLife.72382 pubmed: 35319462 pmcid: 8983040
van den Hoek H et al (2022) In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains. Science 377(6605):543–548
doi: 10.1126/science.abm6704 pubmed: 35901159
Le Guennec M et al (2020) A helical inner scaffold provides a structural basis for centriole cohesion. Sci Adv 6(7):eaaz4137
doi: 10.1126/sciadv.aaz4137 pubmed: 32110738 pmcid: 7021493
Schweizer N et al (2021) Sub-centrosomal mapping identifies augmin-γTuRC as part of a centriole-stabilizing scaffold. Nat Commun 12(1):6042
doi: 10.1038/s41467-021-26252-5 pubmed: 34654813 pmcid: 8519919
Vásquez-Limeta A et al (2022) CPAP insufficiency leads to incomplete centrioles that duplicate but fragment. J Cell Biol 221(5):e202108018
doi: 10.1083/jcb.202108018 pubmed: 35404385 pmcid: 9007748
Tian Y et al (2021) Superresolution characterization of core centriole architecture. J Cell Biol 220(4):e202005103
doi: 10.1083/jcb.202005103 pubmed: 33533934 pmcid: 7863704
Gambarotto D et al (2019) Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat Methods 16(1):71–74
doi: 10.1038/s41592-018-0238-1 pubmed: 30559430
Sahabandu N et al (2019) Expansion microscopy for the analysis of centrioles and cilia. J Microsc 276(3):145–159
doi: 10.1111/jmi.12841 pubmed: 31691972 pmcid: 6972531
Ku T et al (2016) Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol 34(9):973–981
doi: 10.1038/nbt.3641 pubmed: 27454740 pmcid: 5070610
Graser S et al (2007) Cep164, a novel centriole appendage protein required for primary cilium formation. J Cell Biol 179(2):321–330
doi: 10.1083/jcb.200707181 pubmed: 17954613 pmcid: 2064767
Cajanek L, Nigg EA (2014) Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proc Natl Acad Sci U S A 111(28):E2841–E2850
doi: 10.1073/pnas.1401777111 pubmed: 24982133 pmcid: 4104846
Caspary T, Larkins CE, Anderson KV (2007) The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12(5):767–778
doi: 10.1016/j.devcel.2007.03.004 pubmed: 17488627
Fisher S et al (2020) ARF family GTPases with links to cilia. Am J Physiol Cell Physiol 319(2):C404–c418
doi: 10.1152/ajpcell.00188.2020 pubmed: 32520609 pmcid: 7500214
Kong D, Loncarek J (2021) Analyzing centrioles and cilia by expansion microscopy. Methods Mol Biol 2329:249–263
doi: 10.1007/978-1-0716-1538-6_18 pubmed: 34085228 pmcid: 8344367

Auteurs

Dong Kong (D)

Cancer Innovation Laboratory, NIH/NCI/CCR, Frederick, MD, USA.

Delgermaa Luvsanjav (D)

Cancer Innovation Laboratory, NIH/NCI/CCR, Frederick, MD, USA.

Jadranka Loncarek (J)

Cancer Innovation Laboratory, NIH/NCI/CCR, Frederick, MD, USA. jadranka.loncarek@nih.gov.

Articles similaires

STAT3 Transcription Factor Respiratory Syncytial Virus Infections Humans Animals Mice
Microscopy Humans Artificial Intelligence Primary Health Care

Detailing organelle division and segregation in Plasmodium falciparum.

Julie M J Verhoef, Cas Boshoven, Felix Evers et al.
1.00
Plasmodium falciparum Mitochondria Apicoplasts Humans Animals
Malaria, Vivax Peru Humans Recurrence Female

Classifications MeSH