Functionally Enhanced XNA Aptamers Discovered by Parallelized Library Screening.


Journal

Journal of the American Chemical Society
ISSN: 1520-5126
Titre abrégé: J Am Chem Soc
Pays: United States
ID NLM: 7503056

Informations de publication

Date de publication:
29 Nov 2023
Historique:
medline: 30 11 2023
pubmed: 14 11 2023
entrez: 14 11 2023
Statut: ppublish

Résumé

In vitro evolution strategies have been used for >30 years to generate nucleic acid aptamers against therapeutic targets of interest, including disease-associated proteins. However, this process requires many iterative cycles of selection and amplification, which severely restricts the number of target and library design combinations that can be explored in parallel. Here, we describe a single-round screening approach to aptamer discovery that relies on function-enhancing chemotypes to increase the distribution of high-affinity sequences in a random-sequence library. We demonstrate the success of de novo discovery by affinity selection of threomers against the receptor binding domain of the S1 protein from SARS-CoV-2. Detailed biochemical characterization of the enriched population identified threomers with binding affinity values that are comparable to aptamers produced by conventional SELEX. This work establishes a highly parallelizable path for querying diverse chemical repertoires and may offer a viable route for accelerating the discovery of therapeutic aptamers.

Identifiants

pubmed: 37962593
doi: 10.1021/jacs.3c09497
pmc: PMC10690791
doi:

Substances chimiques

Aptamers, Nucleotide 0
Nucleic Acids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

25789-25796

Références

Nucleic Acids Res. 2019 Jun 4;47(10):4927-4939
pubmed: 30968117
Biochim Biophys Acta. 2012 Mar;1824(3):520-32
pubmed: 22246133
Nature. 1990 Mar 29;344(6265):467-8
pubmed: 1690861
Angew Chem Int Ed Engl. 2007;46(34):6420-36
pubmed: 17634987
Science. 1990 Aug 3;249(4968):505-10
pubmed: 2200121
PLoS One. 2010 Dec 07;5(12):e15004
pubmed: 21165148
J Am Chem Soc. 2015 Jun 3;137(21):6734-7
pubmed: 25966323
J Am Chem Soc. 2021 Jun 2;143(21):8154-8163
pubmed: 34028252
Commun Chem. 2023 Apr 6;6(1):65
pubmed: 37024672
Nucleic Acid Ther. 2011 Aug;21(4):253-63
pubmed: 21793789
Angew Chem Int Ed Engl. 2021 Apr 26;60(18):10273-10278
pubmed: 33684258
Mol Ther Nucleic Acids. 2014 Oct 07;3:e201
pubmed: 25291143
Science. 2012 Apr 20;336(6079):341-4
pubmed: 22517858
Nat Chem. 2018 Apr;10(4):420-427
pubmed: 29507367
J Am Chem Soc. 2018 May 2;140(17):5706-5713
pubmed: 29667819
Acc Chem Res. 2021 Feb 16;54(4):1056-1065
pubmed: 33533593
Science. 2020 Mar 13;367(6483):1260-1263
pubmed: 32075877
Angew Chem Int Ed Engl. 2015 Sep 7;54(37):10971-4
pubmed: 26224087
Angew Chem Int Ed Engl. 2014 May 5;53(19):4796-801
pubmed: 24644057
Nat Commun. 2021 Apr 22;12(1):2366
pubmed: 33888692
Nat Chem. 2022 Mar;14(3):350-359
pubmed: 34916596
ACS Synth Biol. 2023 Jul 21;12(7):2127-2134
pubmed: 37410977
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16790-16798
pubmed: 32631977
Bioorg Med Chem. 1997 Jun;5(6):1087-96
pubmed: 9222502
J Am Chem Soc. 2020 Apr 29;142(17):7721-7724
pubmed: 32298104
Nucleic Acids Res. 2023 Oct 13;51(18):9542-9551
pubmed: 37650628
J Am Chem Soc. 2021 Oct 27;143(42):17761-17768
pubmed: 34637287
Nucleic Acids Res. 2002 Oct 15;30(20):e108
pubmed: 12384610
ACS Synth Biol. 2020 Jul 17;9(7):1873-1881
pubmed: 32531152
Nature. 1993 Aug 5;364(6437):550-3
pubmed: 7687750
Anal Chem. 2020 Jul 21;92(14):9895-9900
pubmed: 32551560
Nat Chem. 2012 Jan 10;4(3):183-7
pubmed: 22354431
Science. 2020 Jun 12;368(6496):1274-1278
pubmed: 32404477
Nature. 1990 Aug 30;346(6287):818-22
pubmed: 1697402
J Am Chem Soc. 2005 Mar 9;127(9):2802-3
pubmed: 15740086
Nat Commun. 2018 Nov 29;9(1):5067
pubmed: 30498223
ACS Synth Biol. 2021 Nov 19;10(11):3190-3199
pubmed: 34739228
Annu Rev Biochem. 1999;68:611-47
pubmed: 10872462
Biochemistry. 2003 Jul 29;42(29):8842-51
pubmed: 12873145
Nat Rev Drug Discov. 2006 Feb;5(2):123-32
pubmed: 16518379
Curr Opin Struct Biol. 2016 Feb;36:122-32
pubmed: 26919170
Science. 2000 Nov 17;290(5495):1347-51
pubmed: 11082060
Q Rev Biophys. 2020 Jul 27;53:e8
pubmed: 32715992
Bioorg Med Chem Lett. 2016 May 15;26(10):2418-2421
pubmed: 27080186

Auteurs

Adriana Lozoya-Colinas (A)

Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-3958, United States.

Yutong Yu (Y)

Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-3958, United States.

John C Chaput (JC)

Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-3958, United States.
Department of Chemistry, University of California, Irvine, Irvine, California 92697-3958, United States.
Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3958, United States.
Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-3958, United States.

Articles similaires

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Structural basis for molecular assembly of fucoxanthin chlorophyll

Koji Kato, Yoshiki Nakajima, Jian Xing et al.
1.00
Diatoms Photosystem I Protein Complex Chlorophyll Binding Proteins Cryoelectron Microscopy Light-Harvesting Protein Complexes

Classifications MeSH