WFA-GPU: gap-affine pairwise read-alignment using GPUs.


Journal

Bioinformatics (Oxford, England)
ISSN: 1367-4811
Titre abrégé: Bioinformatics
Pays: England
ID NLM: 9808944

Informations de publication

Date de publication:
01 Dec 2023
Historique:
received: 21 02 2023
revised: 09 11 2023
accepted: 16 11 2023
medline: 7 12 2023
pubmed: 17 11 2023
entrez: 17 11 2023
Statut: ppublish

Résumé

Advances in genomics and sequencing technologies demand faster and more scalable analysis methods that can process longer sequences with higher accuracy. However, classical pairwise alignment methods, based on dynamic programming (DP), impose impractical computational requirements to align long and noisy sequences like those produced by PacBio and Nanopore technologies. The recently proposed wavefront alignment (WFA) algorithm paves the way for more efficient alignment tools, improving time and memory complexity over previous methods. However, high-performance computing (HPC) platforms require efficient parallel algorithms and tools to exploit the computing resources available on modern accelerator-based architectures. This paper presents WFA-GPU, a GPU (graphics processing unit)-accelerated tool to compute exact gap-affine alignments based on the WFA algorithm. We present the algorithmic adaptations and performance optimizations that allow exploiting the massively parallel capabilities of modern GPU devices to accelerate the alignment computations. In particular, we propose a CPU-GPU co-design capable of performing inter-sequence and intra-sequence parallel sequence alignment, combining a succinct WFA-data representation with an efficient GPU implementation. As a result, we demonstrate that our implementation outperforms the original multi-threaded WFA implementation by up to 4.3× and up to 18.2× when using heuristic methods on long and noisy sequences. Compared to other state-of-the-art tools and libraries, the WFA-GPU is up to 29× faster than other GPU implementations and up to four orders of magnitude faster than other CPU implementations. Furthermore, WFA-GPU is the only GPU solution capable of correctly aligning long reads using a commodity GPU. WFA-GPU code and documentation are publicly available at https://github.com/quim0/WFA-GPU.

Identifiants

pubmed: 37975878
pii: 7425447
doi: 10.1093/bioinformatics/btad701
pmc: PMC10697739
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : European Union Regional Development Fund
Organisme : Spanish Ministerio de Ciencia e Innovacion
ID : PRE2021-101059

Informations de copyright

© The Author(s) 2023. Published by Oxford University Press.

Références

Bioinformatics. 2015 Jun 15;31(12):1913-9
pubmed: 25638815
Bioinformatics. 2017 May 1;33(9):1394-1395
pubmed: 28453688
J Clin Microbiol. 2019 Dec 23;58(1):
pubmed: 31619531
BMC Genomics. 2017 Jan 3;18(1):7
pubmed: 28049418
Bioinformatics. 2021 May 1;37(4):456-463
pubmed: 32915952
Genome Res. 2017 May;27(5):722-736
pubmed: 28298431
BMC Bioinformatics. 2019 Oct 25;20(1):520
pubmed: 31653208
Comput Appl Biosci. 1997 Apr;13(2):145-50
pubmed: 9146961
Bioinformatics. 2017 Nov 01;33(21):3355-3363
pubmed: 28575161
Nat Methods. 2012 Dec;9(12):1185-8
pubmed: 23103880
Bioinformatics. 2019 Nov 1;35(21):4255-4263
pubmed: 30923804
Bioinformatics. 2007 Jan 15;23(2):156-61
pubmed: 17110365
BMC Bioinformatics. 2008 Jan 09;9:11
pubmed: 18184432
PLoS One. 2013 Dec 04;8(12):e82138
pubmed: 24324759
Brief Bioinform. 2020 Jan 17;21(1):1-10
pubmed: 30239587
Genome Res. 2010 Sep;20(9):1297-303
pubmed: 20644199
BMC Bioinformatics. 2018 Feb 19;19(Suppl 1):45
pubmed: 29504909
BMC Bioinformatics. 2020 Sep 15;21(1):406
pubmed: 32933482
BMC Bioinformatics. 2016 Feb 10;17:81
pubmed: 26864881
BMC Bioinformatics. 2020 Sep 17;21(Suppl 13):388
pubmed: 32938392
Genome Res. 2009 Jun;19(6):1117-23
pubmed: 19251739
Bioinformatics. 2018 Sep 15;34(18):3094-3100
pubmed: 29750242
Bioinformatics. 2000 Aug;16(8):699-706
pubmed: 11099256

Auteurs

Quim Aguado-Puig (Q)

Departament d'Arquitectura de Computadors i Sistemes Operatius, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.

Max Doblas (M)

Computer Sciences Department, Barcelona Supercomputing Center, Barcelona 08034, Spain.

Christos Matzoros (C)

Computer Sciences Department, Barcelona Supercomputing Center, Barcelona 08034, Spain.

Antonio Espinosa (A)

Departament d'Arquitectura de Computadors i Sistemes Operatius, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.

Juan Carlos Moure (JC)

Departament d'Arquitectura de Computadors i Sistemes Operatius, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.

Santiago Marco-Sola (S)

Computer Sciences Department, Barcelona Supercomputing Center, Barcelona 08034, Spain.
Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya, Barcelona 08034, Spain.

Miquel Moreto (M)

Computer Sciences Department, Barcelona Supercomputing Center, Barcelona 08034, Spain.
Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya, Barcelona 08034, Spain.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature

Classifications MeSH