Further exploration of the collision-induced dissociation of select beta blockers: Acebutolol, atenolol, bisoprolol, carteolol, and labetalol.


Journal

Journal of mass spectrometry : JMS
ISSN: 1096-9888
Titre abrégé: J Mass Spectrom
Pays: England
ID NLM: 9504818

Informations de publication

Date de publication:
Dec 2023
Historique:
revised: 20 10 2023
received: 01 09 2023
accepted: 27 10 2023
medline: 23 11 2023
pubmed: 22 11 2023
entrez: 22 11 2023
Statut: ppublish

Résumé

Beta blockers are a class of drugs commonly used to treat heart-related diseases; they are also regulated under the World Anti-Doping Agency. Tandem mass spectrometry is often used in the pharmaceutical industry, clinical analysis laboratory, and antidoping laboratory for detection and characterization of drugs and their metabolites. A deeper chemical understanding of dissociation pathways may eventually lead to an improved ability to predict tandem mass spectra of compounds based strictly on their chemical structure (or vice versa), which is especially important for characterization of unknowns such as emerging designer drugs or novel metabolites. In addition to providing insights into dissociation pathways, the use of energy-resolved breakdown curves can produce improved selectivity and lend insights into optimal fragmentation conditions for liquid chromatography-tandem mass spectrometry LC-MS/MS workflows. Here, we perform energy-resolved collision cell and multistage ion trap collision-induced dissociation-mass spectrometry (CID-MS) experiments, along with complementary density functional theory calculations, on five beta blockers (acebutolol, atenolol, bisoprolol, carteolol, and labetalol), to better understand the details of the pathways giving rise to the observed MS/MS patterns. Results from this work are contextualized within previously reported literature on these compounds. New insights into the formation of the characteristic product ion m/z 116 and the pathway leading to characteristic loss of 77 u are highlighted. We also present comparisons of breakdown curves obtained via qToF, quadrupole ion trap, and in-source CID, allowing for differences between the data to be noted and providing a step toward allowing for improved selectivity of breakdown curves to be realized on simple instruments such as single quadrupoles or ion traps.

Identifiants

pubmed: 37990768
doi: 10.1002/jms.4985
doi:

Substances chimiques

Bisoprolol Y41JS2NL6U
Carteolol 8NF31401XG
Labetalol R5H8897N95
Acebutolol 67P356D8GH
Atenolol 50VV3VW0TI

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e4985

Subventions

Organisme : Mississippi State University

Informations de copyright

© 2023 John Wiley & Sons, Ltd.

Références

Grandi E, Ripplinger CM. Antiarrhythmic mechanisms of beta blocker therapy. Pharmacol Res. 2019;146:104274. doi:10.1016/j.phrs.2019.104274
Wong GW, Wright JM. Blood pressure lowering efficacy of nonselective beta-blockers for primary hypertension. Cochrane Database Syst Rev. 2014;(2):CD007452. doi:10.1002/14651858.CD007452.pub2
Dézsi CA, Szentes V. The real role of β-blockers in daily cardiovascular therapy. Am J Cardiovasc Drugs. 2017;17(5):361-373. doi:10.1007/s40256-017-0221-8
The World Anti-Doping Code: International Standard: Prohibited List. Published online 2023.
Abushareeda W, Vonaparti A, Saad KA, et al. High resolution full scan liquid chromatography mass spectrometry comprehensive screening in sports antidoping urine analysis. J Pharm Biomed Anal. 2018;151:10-24. doi:10.1016/j.jpba.2017.12.025
Mazzarino M, Fiacco I, de la Torre X, Botrè F. Screening and confirmation analysis of stimulants, narcotics and beta-adrenergic agents in human urine by hydrophilic interaction liquid chromatography coupled to mass spectrometry. J Chromatogr a. 2011;1218(45):8156-8167. doi:10.1016/j.chroma.2011.09.020
Knoop A, Fußhöller G, Haenelt N, et al. Mass spectrometric characterization of urinary hydrafinil metabolites for routine doping control purposes. Drug Test Anal. 2021;13(11-12):1915-1920. doi:10.1002/dta.3137
Thevis M, Thomas A, Fußhöller G, Beuck S, Geyer H, Schänzer W. Mass spectrometric characterization of urinary metabolites of the selective androgen receptor modulator andarine (S-4) for routine doping control purposes. Rapid Commun Mass Spectrom. 2010;24(15):2245-2254. doi:10.1002/rcm.4637
Sultana T, Murray C, Ehsanul Hoque M, Metcalfe CD. Monitoring contaminants of emerging concern from tertiary wastewater treatment plants using passive sampling modelled with performance reference compounds. Environ Monit Assess. 2017;189(1):1. doi:10.1007/s10661-016-5706-4
Jelic A, Gros M, Ginebreda A, et al. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 2011;45(3):1165-1176. doi:10.1016/j.watres.2010.11.010
Yi M, Sheng Q, Sui Q, Lu H. β-Blockers in the environment: distribution, transformation, and ecotoxicity. Environ Pollut. 2020;266(Pt 2):115269. doi:10.1016/j.envpol.2020.115269
Johnson RD, Lewis RJ. Quantitation of atenolol, metoprolol, and propranolol in postmortem human fluid and tissue specimens via LC/APCI-MS. Forensic Sci Int. 2006;156(2-3):106-117. doi:10.1016/j.forsciint.2005.01.001
Sadler Simões S, Castañera Ajenjo A, Dias MJ. Dried blood spots combined to an UPLC-MS/MS method for the simultaneous determination of drugs of abuse in forensic toxicology. J Pharm Biomed Anal. 2018;147:634-644. doi:10.1016/j.jpba.2017.02.046
Maublanc J, Dulaurent S, Morichon J, Lachâtre G, Gaulier JM. Identification and quantification of 35 psychotropic drugs and metabolites in hair by LC-MS/MS: application in forensic toxicology. Int J Leg Med. 2015;129(2):259-268. doi:10.1007/s00414-014-1005-1
Strano-Rossi S, Cadwallader AB, de la Torre X, Botrè F. Toxicological determination and in vitro metabolism of the designer drug methylenedioxypyrovalerone (MPDV) by gas chromatography/mass spectrometry and liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(18):2706-2714. doi:10.1002/rcm.4692
ter Laak TL, Emke E, Benschop A, Nabben T, Béen F. Triangulating Amsterdam's illicit stimulant use trends by wastewater analysis and recreational drug use monitoring. Forensic Sci Int. 2022;340:111449. doi:10.1016/j.forsciint.2022.111449
Brandeburová P, Bodík I, Horáková I, et al. Wastewater-based epidemiology to assess the occurrence of new psychoactive substances and alcohol consumption in Slovakia. Ecotoxicol Environ Saf. 2020;200:110762. doi:10.1016/j.ecoenv.2020.110762
Zuccato E, Castiglioni S, Senta I, et al. Population surveys compared with wastewater analysis for monitoring illicit drug consumption in Italy in 2010-2014. Drug Alcohol Depend. 2016;161:178-188. doi:10.1016/j.drugalcdep.2016.02.003
Delamoye M, Duverneuil C, Paraire F, Mazancourt P, Alvarez JC. Simultaneous determination of thirteen β-blockers and one metabolite by gradient high-performance liquid chromatography with photodiode-array UV detection. Forensic Sci Int. 2004;141(1):23-31. doi:10.1016/j.forsciint.2003.12.008
Mazzarino M, de la Torre X, Botrè F. A screening method for the simultaneous detection of glucocorticoids, diuretics, stimulants, anti-oestrogens, beta-adrenergic drugs and anabolic steroids in human urine by LC-ESI-MS/MS. Anal Bioanal Chem. 2008;392(4):681-698. doi:10.1007/s00216-008-2292-5
Khuroo A, Mishra S, Singh O, Saxena S, Monif T. Simultaneous determination of atenolol and chlorthalidone by LC-MS-MS in human plasma. Chromatographia. 2008;68(9-10):721-729. doi:10.1365/s10337-008-0755-7
Murray GJ, Danaceau JP. Simultaneous extraction and screening of diuretics, beta-blockers, selected stimulants and steroids in human urine by HPLC-MS/MS and UPLC-MS/MS. J Chromatogr B. 2009;877(30):3857-3864. doi:10.1016/j.jchromb.2009.09.036
Rakete S, Schubert T, Vogeser M. Semi-automated serum steroid profiling with tandem mass spectrometry. J Mass Spectr Adv Clin Lab. 2023;27:40-48. doi:10.1016/j.jmsacl.2022.12.006
Stahl-Zeng J, Lange V, Ossola R, Krek W, Aebersold R, Domon B. High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics. 2007;6(10):1809-1817. doi:10.1074/mcp.M700132-MCP200
Lu Y, Cheng Z, Liu C, Cao X. Determination of sulfonamides in fish using a modified QuEChERS extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Food Anal Methods. 2016;9(6):1857-1866. doi:10.1007/s12161-016-0477-7
Mörlein S, Schuster C, Paal M, Vogeser M. Collision energy-breakdown curves-an additional tool to characterize MS/MS methods. Clin Mass Spectr. 2020;18:48-53. doi:10.1016/j.clinms.2020.10.001
Parcher JF, Wang M, Chittiboyina AG, Khan IA. In-source collision-induced dissociation (IS-CID): applications, issues and structure elucidation with single-stage mass analyzers. Drug Test Anal. 2018;10(1):28-36. doi:10.1002/dta.2249
Strynar M, Dagnino S, McMahen R, et al. Identification of novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass spectrometry (TOFMS). Environ Sci Technol. 2015;49(19):11622-11630. doi:10.1021/acs.est.5b01215
Liu Q, Hu X, Xie J. Determination of nerve agent degradation products in environmental samples by liquid chromatography-time-of-flight mass spectrometry with electrospray ionization. Anal Chim Acta. 2004;512(1):93-101. doi:10.1016/j.aca.2004.02.023
Forbes TP, Sisco E. In-source collision induced dissociation of inorganic explosives for mass spectrometric signature detection and chemical imaging. Anal Chim Acta. 2015;892(10):1-9. doi:10.1016/j.aca.2015.06.008
Pereira CAM, Yariwake JH, McCullagh M. Distinction of the C-glycosylflavone isomer pairs orientin/isoorientin and vitexin/isovitexin using HPLC-MS exact mass measurement and in-source CID. Phytochem Anal. 2005;16(5):295-301. doi:10.1002/pca.820
Davidson JT, Sasiene ZJ, Jackson GP. Comparison of in-source collision-induced dissociation and beam-type collision-induced dissociation of emerging synthetic drugs using a high-resolution quadrupole time-of-flight mass spectrometer. J Mass Spectrom. 2021;56(2):e4679. doi:10.1002/jms.4679
Sharp J, Do D, Tyler Davidson JT. Assessment of the similarity between in-source collision-induced dissociation (IS-CID) fragment ion spectra and tandem mass spectrometry (MS/MS) product ion spectra for seized drug identifications. Forensic Chemistry. 2022;30:100441. doi:10.1016/j.forc.2022.100441
Malcolm A, Wright S, Syms RRA, Dash N, Schwab MA, Finlay A. Miniature mass spectrometer systems based on a microengineered quadrupole filter. Anal Chem. 2010;82(5):1751-1758. doi:10.1021/ac902349k
Devereaux ZJ, Reynolds CA, Fischer JL, et al. Matrix-assisted ionization on a portable mass spectrometer: analysis directly from biological and synthetic materials. Anal Chem. 2016;88(22):10831-10836. doi:10.1021/acs.analchem.6b00304
Burns D, Mathias S, McCullough BJ, et al. Ambient ionisation mass spectrometry for the trace detection of explosives using a portable mass spectrometer. Int J Mass Spectr. 2022;471:116735. doi:10.1016/j.ijms.2021.116735
Augusto Gómez-Ríos G, Vasiljevic T, Gionfriddo E, Yu M, Pawliszyn J. Towards on-site analysis of complex matrices by solid-phase microextraction-transmission mode coupled to a portable mass spectrometer via direct analysis in real time. Analyst. 2017;142(16):2928-2935. doi:10.1039/C7AN00718C
Li L, Zhang T, Wang D, et al. Portable digital linear ion trap mass spectrometer based on separate-region corona discharge ionization source for on-site rapid detection of illegal drugs. Molecules. 2022;27(11):3506. doi:10.3390/molecules27113506
Wolf JC, Etter R, Schaer M, Siegenthaler P, Zenobi R. Direct and sensitive detection of CWA simulants by active capillary plasma ionization coupled to a handheld ion trap mass spectrometer. J am Soc Mass Spectrom. 2016;27(7):1197-1202. doi:10.1007/s13361-016-1374-4
Xue B, Sun L, Huang Z, et al. A hand-portable digital linear ion trap mass spectrometer. Analyst. 2016;141(19):5535-5542. doi:10.1039/C6AN01118G
Gao L, Song Q, Patterson GE, Cooks RG, Ouyang Z. Handheld rectilinear ion trap mass spectrometer. Anal Chem. 2006;78(17):5994-6002. doi:10.1021/ac061144k
Fedick PW, Pu F, Morato NM, Cooks RG. Identification and confirmation of fentanyls on paper using portable surface enhanced Raman spectroscopy and paper spray ionization mass spectrometry. J am Soc Mass Spectrom. 2020;31(3):735-741. doi:10.1021/jasms.0c00004
McCullough BJ, Patel K, Francis R, et al. Atmospheric solids analysis probe coupled to a portable mass spectrometer for rapid identification of bulk drug seizures. J am Soc Mass Spectrom. 2020;31(2):386-393. doi:10.1021/jasms.9b00020
Abonamah JV, Eckenrode BA, Moini M. On-site detection of fentanyl and its derivatives by field portable nano-liquid chromatography-electron lonization-mass spectrometry (nLC-EI-MS). Forensic Chemistry. 2019;16:100180. doi:10.1016/j.forc.2019.100180
Voelker SE, Kern SE, Falconer TM, et al. Evaluation of four field portable devices for the rapid detection of mitragynine in suspected kratom products. J Pharm Biomed Anal. 2021;201:114104. doi:10.1016/j.jpba.2021.114104
Lanzarotta A, Kern S, Batson J, et al. Evaluation of “toolkit” consisting of handheld and portable analytical devices for detecting active pharmaceutical ingredients in drug products collected during a simultaneous nation-wide mail blitz. J Pharm Biomed Anal. 2021;203:114183. doi:10.1016/j.jpba.2021.114183
Hemida M, Haddad PR, Lam SC, et al. Small footprint liquid chromatography-mass spectrometry for pharmaceutical reaction monitoring and automated process analysis. J Chromatogr a. 2021;1656:462545. doi:10.1016/j.chroma.2021.462545
Pandey S, Hu Y, Bushman LR, Castillo-Mancilla J, Anderson PL, Cooks RG. Miniature mass spectrometer-based point-of-care assay for cabotegravir and rilpivirine in whole blood. Anal Bioanal Chem. 2022;414(11):3387-3395. doi:10.1007/s00216-022-03954-3
Gozdzialski L, Aasen J, Larnder A, et al. Portable gas chromatography-mass spectrometry in drug checking: detection of carfentanil and etizolam in expected opioid samples. Int J Drug Policy. 2021;97:103409. doi:10.1016/j.drugpo.2021.103409
Hufsky F, Scheubert K, Böcker S. Computational mass spectrometry for small-molecule fragmentation. TrAC Trends Anal Chem. 2014;53:41-48. doi:10.1016/j.trac.2013.09.008
Allen F, Greiner R, Wishart D. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics. 2015;11(1):98-110. doi:10.1007/s11306-014-0676-4
Bremer PL, Vaniya A, Kind T, Wang S, Fiehn O. How well can we predict mass spectra from structures? Benchmarking competitive fragmentation modeling for metabolite identification on untrained tandem mass spectra. J Chem Inf Model. 2022;62(17):4049-4056. doi:10.1021/acs.jcim.2c00936
Wei JN, Belanger D, Adams RP, Sculley D. Rapid prediction of electron-ionization mass spectrometry using neural networks. ACS Cent Sci. 2019;5(4):700-708. doi:10.1021/acscentsci.9b00085
Gasteiger J, Hanebeck W, Schulz KP. Prediction of mass spectra from structural information. J Chem Inf Comput Sci. 1992;32(4):264-271. doi:10.1021/ci00008a001
Hill DW, Kertesz TM, Fontaine D, Friedman R, Grant DF. Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra. Anal Chem. 2008;80(14):5574-5582. doi:10.1021/ac800548g
Klagkou K, Pullen F, Harrison M, Organ A, Firth A, Langley GJ. Approaches towards the automated interpretation and prediction of electrospray tandem mass spectra of non-peptidic combinatorial compounds. Rapid Commun Mass Spectrom. 2003;17(11):1163-1168. doi:10.1002/rcm.987
Bandu ML, Watkins KR, Bretthauer ML, Moore CA, Desaire H. Prediction of MS/MS data. 1. A focus on pharmaceuticals containing carboxylic acids. Anal Chem. 2004;76(6):1746-1753. doi:10.1021/ac0353785
Bouchoux G, Choret N, Berruyer-Penaud F, Flammang R. Thermochemistry and unimolecular reactivity of protonated α,ω-aminoalcohols in the gas phase. Int J Mass Spectrometry. 2002;217(1-3):195-230. doi:10.1016/S1387-3806(02)00577-8
Eichmann ES, Brodbelt JS. Effects of functional group interactions on the dissociation reactions of protonated amino alcohols. Org Mass Spectrom. 1993;28(6):665-671. doi:10.1002/oms.1210280603
Moc J, Simmie JM, Curran HJ. The elimination of water from a conformationally complex alcohol: a computational study of the gas phase dehydration of n-butanol. J Mol Struct. 2009;928(1):149-157. doi:10.1016/j.molstruc.2009.03.026
Karliner J, Budzikiewicz H, Djerassi C. Mass spectrometry in structural and stereochemical problems. XCI.1 The electron impact induced elimination of water from 3-Hydroxy steroids. J Org Chem. 1966;31(3):710-713. doi:10.1021/jo01341a015
Lifshitz C. Tropylium ion formation from toluene: solution of an old problem in organic mass spectrometry. Acc Chem Res. 1994;27(5):138-144. doi:10.1021/ar00041a004
Rylander PN, Meyerson S, Grubb HM. Organic ions in the gas phase. II. The tropylium ion. J am Chem Soc. 1957;79(4):842-846. doi:10.1021/ja01561a016
Von E, Doering W, Knox LH. The Cycloheptatrienylium (Tropylium) ion. J am Chem Soc. 1954;76(12):3203-3206. doi:10.1021/ja01641a027
Cheng JQ, Liu T, Nie XM, Chen FM, Wang CS, Zhang F. Analysis of 27 β-blockers and metabolites in milk powder by high performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry. Molecules. 2019;24(4):820. doi:10.3390/molecules24040820
Thevis M, Opfermann G, Schänzer W. High speed determination of beta-receptor blocking agents in human urine by liquid chromatography/tandem mass spectrometry. Biomed Chromatogr. 2001;15(6):393-402. doi:10.1002/bmc.87
Holman SW, Wright P, Langley GJ. The low-energy collision-induced dissociation product ion spectra of protonated beta-blockers reveal an analogy to fragmentation behaviour under electron ionisation conditions. J Mass Spectrom. 2011;46(11):1182-1185. doi:10.1002/jms.2006
Radjenović J, Pérez S, Petrović M, Barceló D. Identification and structural characterization of biodegradation products of atenolol and glibenclamide by liquid chromatography coupled to hybrid quadrupole time-of-flight and quadrupole ion trap mass spectrometry. J Chromatogr a. 2008;1210(2):142-153. doi:10.1016/j.chroma.2008.09.060
Kumar V, Malik S, Singh S. Polypill for the treatment of cardiovascular diseases: part 2. LC-MS/TOF characterization of interaction/degradation products of atenolol/lisinopril and aspirin, and mechanisms of formation thereof. J Pharm Biomed Anal. 2008;48(3):619-628. doi:10.1016/j.jpba.2008.06.003
Upthagrove AL, Hackett M, Nelson WL. Fragmentation pathways of selectively labeled propranolol using electrospray ionization on an ion trap mass spectrometer and comparison with ions formed by electron impact. Rapid Commun Mass Spectrom. 1999;13(6):534-541. doi:10.1002/(SICI)1097-0231(19990330)13:6%3C534::AID-RCM520%3E3.0.CO;2-F
Rakibe U, Tiwari R, Mahajan A, Rane V, Wakte P. LC and LC-MS/MS studies for the identification and characterization of degradation products of acebutolol. J Pharm Anal. 2018;8(6):357-365. doi:10.1016/j.jpha.2018.03.001
Carlo MJ, York PM, Patrick AL. Gas-phase dissociation pathways of beta-2 agonists. Int J Mass Spectr. 2021;463:116548. doi:10.1016/j.ijms.2021.116548
Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Chem. 2012;4(1):17. doi:10.1186/1758-2946-4-17
Allouche AR. Gabedit-a graphical user interface for computational chemistry softwares. J Comput Chem. 2011;32(1):174-182. doi:10.1002/jcc.21600
Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16, Revision C.01. Published online 2019.
Umezawa H, Lee XP, Arima Y, et al. Simultaneous determination of β-blockers in human plasma using liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 2008;22(7):702-711. doi:10.1002/bmc.987
Thevis M. Mass Spectrometry in Sports Drug Testing. John Wiley & Sons, Inc; 2010.
Liu L, Wen Y, Liu K, Sun L, Lu Y, Yin Z. Simultaneous determination of a broad range of cardiovascular drugs in plasma with a simple and efficient extraction/clean up procedure and chromatography-mass spectrometry analysis. RSC Adv. 2014;4(38):19629-19639. doi:10.1039/C4RA01045K
Stolker AAM, Niesing W, Hogendoorn EA, Versteegh JFM, Fuchs R, Brinkman UAT. Liquid chromatography with triple-quadrupole or quadrupole-time of flight mass spectrometry for screening and confirmation of residues of pharmaceuticals in water. Anal Bioanal Chem. 2004;378(4):955-963. doi:10.1007/s00216-003-2253-y
Lee HB, Sarafin K, Peart TE. Determination of β-blockers and β2-agonists in sewage by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr a. 2007;1148(2):158-167. doi:10.1016/j.chroma.2007.03.024
Tay KS, Rahman NA, Abas MRB. Characterization of atenolol transformation products in ozonation by using rapid resolution high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. Microchem J. 2011;99(2):312-326. doi:10.1016/j.microc.2011.05.022
Reig M, Toldrá F. Veterinary drug residues in meat: concerns and rapid methods for detection. Meat Sci. 2008;78(1-2):60-67. doi:10.1016/j.meatsci.2007.07.029
Kaufmann A, Ryser B. Multiresidue analysis of tranquilizers and the beta-blocker Carazolol in meat by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2001;15(18):1747-1751. doi:10.1002/rcm.393
Sai F, Hong M, Yunfeng Z, Huijing C, Yongning W. Simultaneous detection of residues of 25 β2-agonists and 23 β-blockers in animal foods by high-performance liquid chromatography coupled with linear ion trap mass spectrometry. J Agric Food Chem. 2012;60(8):1898-1905. doi:10.1021/jf2039058
Maurer HH. Multi-analyte procedures for screening for and quantification of drugs in blood, plasma, or serum by liquid chromatography-single stage or tandem mass spectrometry (LC-MS or LC-MS/MS) relevant to clinical and forensic toxicology. Clin Biochem. 2005;38(4):310-318. doi:10.1016/j.clinbiochem.2005.01.014
Dupuis C, Gaulier JM, Pélissier-Alicot AL, Marquet P, Lachâtre G. Determination of three β-blockers in biofluids and solid tissues by liquid chromatography-electrospray-mass spectrometry. J Anal Toxicol. 2004;28(8):674-679. doi:10.1093/jat/28.8.674
Zhang X, Zhang H, Yu K, et al. Rapid monitoring approach for microplastics using portable pyrolysis-mass spectrometry. Anal Chem. 2020;92(6):4656-4662. doi:10.1021/acs.analchem.0c00300
Brennwald MS, Schmidt M, Oser J, Kipfer R. A portable and autonomous mass spectrometric system for on-site environmental gas analysis. Environ Sci Technol. 2016;50(24):13455-13463. doi:10.1021/acs.est.6b03669

Auteurs

Matthew J Carlo (MJ)

Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA.

Amanda L Patrick (AL)

Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA.

Articles similaires

Cicer Germination Proteolysis Seeds Plant Proteins
Humans Pisum sativum Breast Neoplasms Tandem Mass Spectrometry Plant Extracts
Hyperaldosteronism Humans Renin Aldosterone Middle Aged
Humans Biomarkers Machine Learning Cardiovascular Diseases Male

Classifications MeSH