Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
28 Nov 2023
Historique:
received: 05 08 2023
accepted: 26 11 2023
medline: 30 11 2023
pubmed: 29 11 2023
entrez: 28 11 2023
Statut: epublish

Résumé

Second-generation bioethanol production using lignocellulosic biomass as feedstock requires a highly efficient multistress-tolerant yeast. This study aimed to develop a robust yeast strain of P. kudriavzevii via the adaptive laboratory evolution (ALE) technique. The parental strain of P. kudriavzevii was subjected to repetitive long-term cultivation in medium supplemented with a gradually increasing concentration of acetic acid, the major weak acid liberated during the lignocellulosic pretreatment process. Three evolved P. kudriavzevii strains, namely, PkAC-7, PkAC-8, and PkAC-9, obtained in this study exhibited significantly higher resistance toward multiple stressors, including heat, ethanol, osmotic stress, acetic acid, formic acid, furfural, 5-(hydroxymethyl) furfural (5-HMF), and vanillin. The fermentation efficiency of the evolved strains was also improved, yielding a higher ethanol concentration, productivity, and yield than the parental strain, using undetoxified sugarcane bagasse hydrolysate as feedstock. These findings provide evidence that ALE is a practical approach for increasing the multistress tolerance of P. kudriavzevii for stable and efficient second-generation bioethanol production from lignocellulosic biomass.

Identifiants

pubmed: 38017261
doi: 10.1038/s41598-023-48408-7
pii: 10.1038/s41598-023-48408-7
pmc: PMC10684600
doi:

Substances chimiques

Acetic Acid Q40Q9N063P
lignocellulose 11132-73-3
Cellulose 9004-34-6
Ethanol 3K9958V90M
Furaldehyde DJ1HGI319P

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

21000

Informations de copyright

© 2023. The Author(s).

Références

Yeast. 2021 Jul;38(7):391-400
pubmed: 34000094
Biotechnol Biofuels. 2008 Apr 15;1(1):3
pubmed: 18471310
J Appl Microbiol. 2010 Jul;109(1):13-24
pubmed: 20070446
FEBS Lett. 2001 Jun 1;498(1):98-103
pubmed: 11389906
Antonie Van Leeuwenhoek. 2013 Feb;103(2):421-31
pubmed: 23053696
Microb Cell Fact. 2011 Jan 10;10(1):2
pubmed: 21219616
J Ind Microbiol Biotechnol. 2020 Mar;47(3):329-341
pubmed: 32152759
Microb Biotechnol. 2019 Nov;12(6):1154-1163
pubmed: 30394685
Biotechnol Biofuels. 2015 Mar 12;8:44
pubmed: 25774217
Metab Eng. 2019 Dec;56:1-16
pubmed: 31401242
OMICS. 2010 Oct;14(5):587-601
pubmed: 20955010
J Biomed Biotechnol. 2012;2012:989572
pubmed: 23251086
Microorganisms. 2022 Apr 09;10(4):
pubmed: 35456848
Biochem J. 2002 May 1;363(Pt 3):769-76
pubmed: 11964178
J Fungi (Basel). 2023 Jan 27;9(2):
pubmed: 36836285
Sci Rep. 2022 Dec 21;12(1):22062
pubmed: 36543886
3 Biotech. 2018 Nov;8(11):474
pubmed: 30456008
Antonie Van Leeuwenhoek. 2015 Jul;108(1):173-90
pubmed: 25980834
3 Biotech. 2015 Aug;5(4):337-353
pubmed: 28324547
J Environ Manage. 2019 Mar 15;234:44-51
pubmed: 30599329
Arch Biochem Biophys. 2007 Sep 1;465(1):26-37
pubmed: 17570335
Front Microbiol. 2018 Feb 21;9:274
pubmed: 29515554
Int J Food Microbiol. 2021 Mar 16;342:109077
pubmed: 33550155
Bioresour Technol. 2013 Feb;130:168-73
pubmed: 23306125
Sci Rep. 2022 Aug 17;12(1):13965
pubmed: 35978081
Microb Cell Fact. 2017 Mar 17;16(1):49
pubmed: 28302114
Sci Rep. 2018 May 18;8(1):7860
pubmed: 29777118
Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents
pubmed: 12209002
Braz J Microbiol. 2018 Apr - Jun;49(2):378-391
pubmed: 29154013
3 Biotech. 2018 Jul;8(7):312
pubmed: 30023144
Appl Microbiol Biotechnol. 2022 Jan;106(1):383-399
pubmed: 34913993
Bioresour Technol. 2012 May;111:161-6
pubmed: 22357292
Sci Rep. 2021 Jun 16;11(1):12652
pubmed: 34135398
Cell. 2018 Sep 6;174(6):1549-1558.e14
pubmed: 30100189
Microorganisms. 2022 Dec 29;11(1):
pubmed: 36677384
Biotechnol Biofuels. 2021 Dec 4;14(1):231
pubmed: 34863266
Bioresour Technol. 2009 Sep;100(18):4176-82
pubmed: 19375908
Bioresour Technol. 2022 Nov;364:128079
pubmed: 36220531
Biotechnol J. 2022 Mar;17(3):e2000416
pubmed: 33964181
Bioresour Technol. 2019 Sep;288:121540
pubmed: 31174085
Appl Biochem Biotechnol. 2014 Aug;173(7):1940-54
pubmed: 24879599
Biotechnol Biofuels. 2016 Aug 12;9:173
pubmed: 27525042
Braz J Microbiol. 2017 Jul - Sep;48(3):461-475
pubmed: 28365094
Biotechnol Biofuels. 2010 Jan 15;3:2
pubmed: 20150993
Appl Environ Microbiol. 2012 Dec;78(23):8377-87
pubmed: 23001666
Mol Cell Biol. 2007 Sep;27(18):6446-56
pubmed: 17620418
Biochem Biophys Res Commun. 2017 Nov 4;493(1):233-239
pubmed: 28899778
Food Res Int. 2018 May;107:528-535
pubmed: 29580516
Biotechnol Bioeng. 2005 May 20;90(4):473-81
pubmed: 15772945
J Appl Microbiol. 2018 Sep;125(3):766-776
pubmed: 29770550
Front Bioeng Biotechnol. 2018 Jul 31;6:107
pubmed: 30109229
J Biosci Bioeng. 2015 Mar;119(3):297-302
pubmed: 25282639
Molecules. 2021 Feb 04;26(4):
pubmed: 33557207
Food Chem Toxicol. 2000 Sep;38(9):801-9
pubmed: 10930701
Bioresour Technol. 2007 Jul;98(10):1947-50
pubmed: 17011776
Microb Cell Fact. 2010 Oct 25;9:79
pubmed: 20973990
Lett Appl Microbiol. 2007 Jun;44(6):602-6
pubmed: 17576220
Bioprocess Biosyst Eng. 2019 Aug;42(8):1367-1374
pubmed: 31062088
Yeast. 2011 Jul;28(7):547-54
pubmed: 21626536
Bioresour Technol. 2016 Jan;199:103-112
pubmed: 26482946
Bioresour Technol. 2013 May;136:368-76
pubmed: 23567704
Yeast. 2004 Feb;21(3):201-10
pubmed: 14968426
Biotechnol Lett. 2011 Feb;33(2):277-84
pubmed: 20953665
Biotechnol Bioeng. 2016 Apr;113(4):744-53
pubmed: 26416641
PLoS One. 2013 Sep 04;8(9):e73936
pubmed: 24023914
Nucleic Acids Res. 2019 Feb 20;47(3):1211-1224
pubmed: 30476185
Appl Environ Microbiol. 2009 Jun;75(11):3765-76
pubmed: 19363068
Adv Exp Med Biol. 2016;892:229-251
pubmed: 26721276
Biotechnol Biofuels. 2019 Dec 23;12:294
pubmed: 31890022
Bioresour Technol. 2022 Jan;344(Pt B):126247
pubmed: 34740795
Biotechnol Bioeng. 2019 Oct;116(10):2587-2597
pubmed: 31282999

Auteurs

Sureeporn Dolpatcha (S)

Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.

Huynh Xuan Phong (HX)

Department of Microbial Biotechnology, Institute of Food and Biotechnology, Can Tho University, Can Tho, 900000, Vietnam.

Sudarat Thanonkeo (S)

Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, 44150, Thailand.

Preekamol Klanrit (P)

Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.
Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.

Mamoru Yamada (M)

Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.
Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan.

Pornthap Thanonkeo (P)

Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand. portha@kku.ac.th.
Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand. portha@kku.ac.th.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass
Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
Biomass Lignin Wood Populus Microscopy, Electron, Scanning
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins

Classifications MeSH