Genetic barriers more than environmental associations explain Serratia marcescens population structure.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
17 Apr 2024
17 Apr 2024
Historique:
received:
02
11
2023
accepted:
19
03
2024
medline:
19
4
2024
pubmed:
18
4
2024
entrez:
17
4
2024
Statut:
epublish
Résumé
Bacterial species often comprise well-separated lineages, likely emerged and maintained by genetic isolation and/or ecological divergence. How these two evolutionary actors interact in the shaping of bacterial population structure is currently not fully understood. In this study, we investigate the genetic and ecological drivers underlying the evolution of Serratia marcescens, an opportunistic pathogen with high genomic flexibility and able to colonise diverse environments. Comparative genomic analyses reveal a population structure composed of five deeply-demarcated genetic clusters with open pan-genome but limited inter-cluster gene flow, partially explained by Restriction-Modification (R-M) systems incompatibility. Furthermore, a large-scale research on hundred-thousands metagenomic datasets reveals only a partial habitat separation of the clusters. Globally, two clusters only show a separate gene composition coherent with ecological adaptations. These results suggest that genetic isolation has preceded ecological adaptations in the shaping of the species diversity, an evolutionary scenario coherent with the Evolutionary Extended Synthesis.
Identifiants
pubmed: 38632370
doi: 10.1038/s42003-024-06069-w
pii: 10.1038/s42003-024-06069-w
pmc: PMC11023947
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
468Informations de copyright
© 2024. The Author(s).
Références
Nat Commun. 2022 Aug 13;13(1):4751
pubmed: 35963864
Nucleic Acids Res. 2014;42(16):10618-31
pubmed: 25120263
Curr Opin Microbiol. 2008 Oct;11(5):472-7
pubmed: 19086349
Nat Rev Microbiol. 2008 Jun;6(6):431-40
pubmed: 18461076
Genomics. 2021 Nov;113(6):3523-3532
pubmed: 34400240
Genome Biol Evol. 2019 Nov 1;11(11):3240-3251
pubmed: 31665331
Genetics. 1999 Dec;153(4):1525-33
pubmed: 10581263
Nat Rev Microbiol. 2005 Sep;3(9):733-9
pubmed: 16138101
iScience. 2024 Mar 01;27(4):109402
pubmed: 38510115
BMC Infect Dis. 2015 Jan 13;15:11
pubmed: 25582674
PLoS Biol. 2022 Jan 13;20(1):e3001514
pubmed: 35025885
ISME J. 2009 Feb;3(2):199-208
pubmed: 18830278
J Bacteriol. 2006 Aug;188(15):5578-85
pubmed: 16855248
Acta Vet Scand. 2019 Nov 14;61(1):54
pubmed: 31727124
Nat Commun. 2018 Nov 30;9(1):5114
pubmed: 30504855
Lett Appl Microbiol. 2008 Feb;46(2):171-5
pubmed: 18028329
Bioinformatics. 2015 Nov 15;31(22):3691-3
pubmed: 26198102
PLoS One. 2010 Jun 25;5(6):e11147
pubmed: 20593022
J Infect Dis. 2004 Jan 15;189(2):328-38
pubmed: 14722899
Can J Microbiol. 2013 Sep;59(9):627-40
pubmed: 24011346
Bioinformatics. 2014 May 1;30(9):1312-3
pubmed: 24451623
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W573-9
pubmed: 22675075
Front Microbiol. 2020 Mar 31;11:451
pubmed: 32296400
Science. 2007 Jan 26;315(5811):476-80
pubmed: 17255503
Bioinformatics. 2010 Sep 15;26(18):2334-5
pubmed: 20624783
J Biol Chem. 2000 Sep 29;275(39):30202-10
pubmed: 10906141
Nat Commun. 2022 Sep 3;13(1):5195
pubmed: 36057639
Trends Genet. 2013 Mar;29(3):170-5
pubmed: 23332119
Funct Integr Genomics. 2015 Mar;15(2):141-61
pubmed: 25722247
Genome Res. 2016 Aug;26(8):1101-9
pubmed: 27432456
Trends Microbiol. 2010 Jul;18(7):315-22
pubmed: 20452218
Nat Methods. 2021 Apr;18(4):366-368
pubmed: 33828273
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
pubmed: 23193283
Proc Natl Acad Sci U S A. 2016 May 17;113(20):5658-63
pubmed: 27140615
Front Microbiol. 2021 Aug 03;12:709571
pubmed: 34413842
Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296
pubmed: 33885785
Nucleic Acids Res. 2021 Jan 8;49(D1):D10-D17
pubmed: 33095870
Science. 2009 Feb 6;323(5915):741-6
pubmed: 19197054
Trends Microbiol. 2014 May;22(5):235-47
pubmed: 24630527
Adv Exp Med Biol. 2016;915:81-97
pubmed: 27193539
PLoS One. 2010 Mar 10;5(3):e9490
pubmed: 20224823
Genome Res. 2023 Jan;33(1):129-140
pubmed: 36669850
PLoS One. 2021 Nov 08;16(11):e0259673
pubmed: 34748577
Sci Rep. 2019 Jan 10;9(1):46
pubmed: 30631083
PLoS Comput Biol. 2015 Feb 12;11(2):e1004041
pubmed: 25675341
Syst Biol. 2001 Aug;50(4):513-24
pubmed: 12116650
Insects. 2022 May 12;13(5):
pubmed: 35621793
Bioinformatics. 2004 Jan 22;20(2):289-90
pubmed: 14734327
Nat Rev Microbiol. 2005 Sep;3(9):711-21
pubmed: 16138099
Genome Biol. 2016 Jun 20;17(1):132
pubmed: 27323842
Nat Genet. 2014 Mar;46(3):305-309
pubmed: 24509479
Bioinformatics. 2014 Jul 15;30(14):2068-9
pubmed: 24642063
Nature. 2000 May 18;405(6784):299-304
pubmed: 10830951
J Microbiol Immunol Infect. 2011 Apr;44(2):111-5
pubmed: 21439513
Nucleic Acids Res. 2015 Jan;43(Database issue):D298-9
pubmed: 25378308
Science. 2011 Jan 28;331(6016):430-4
pubmed: 21273480
Mol Biol Evol. 2010 Feb;27(2):221-4
pubmed: 19854763
Curr Opin Genet Dev. 2005 Dec;15(6):589-94
pubmed: 16185861