Differences in clinical outcomes of bloodstream infections caused by Klebsiella aerogenes, Klebsiella pneumoniae and Enterobacter cloacae: a multicentre cohort study.
Humans
Enterobacter cloacae
/ isolation & purification
Klebsiella pneumoniae
/ isolation & purification
Male
Female
Bacteremia
/ microbiology
Aged
Middle Aged
Klebsiella Infections
/ mortality
Enterobacter aerogenes
/ isolation & purification
Enterobacteriaceae Infections
/ microbiology
Cohort Studies
Aged, 80 and over
Anti-Bacterial Agents
/ therapeutic use
Recurrence
Treatment Outcome
Enterobacter cloacae
Klebsiella aerogenes
Klebsiella pneumoniae
Bloodstream infection
Mortality
Recurrence
Journal
Annals of clinical microbiology and antimicrobials
ISSN: 1476-0711
Titre abrégé: Ann Clin Microbiol Antimicrob
Pays: England
ID NLM: 101152152
Informations de publication
Date de publication:
06 May 2024
06 May 2024
Historique:
received:
03
03
2024
accepted:
27
04
2024
medline:
7
5
2024
pubmed:
7
5
2024
entrez:
6
5
2024
Statut:
epublish
Résumé
Klebsiella aerogenes has been reclassified from Enterobacter to Klebsiella genus due to its phenotypic and genotypic similarities with Klebsiella pneumoniae. It is unclear if clinical outcomes are also more similar. This study aims to assess clinical outcomes of bloodstreams infections (BSI) caused by K. aerogenes, K. pneumoniae and Enterobacter cloacae, through secondary data analysis, nested in PRO-BAC cohort study. Hospitalized patients between October 2016 and March 2017 with monomicrobial BSI due to K. aerogenes, K. pneumoniae or E. cloacae were included. Primary outcome was a composite clinical outcome including all-cause mortality or recurrence until 30 days follow-up. Secondary outcomes were fever ≥ 72 h, persistent bacteraemia, and secondary device infection. Multilevel mixed-effect Poisson regression was used to estimate the association between microorganisms and outcome. Overall, 29 K. aerogenes, 77 E. cloacae and 337 K. pneumoniae BSI episodes were included. Mortality or recurrence was less frequent in K. aerogenes (6.9%) than in E. cloacae (20.8%) or K. pneumoniae (19.0%), but statistical difference was not observed (rate ratio (RR) 0.35, 95% CI 0.08 to 1.55; RR 0.42, 95% CI 0.10 to 1.71, respectively). Fever ≥ 72 h and device infection were more common in K. aerogenes group. In the multivariate analysis, adjusted for confounders (age, sex, BSI source, hospital ward, Charlson score and active antibiotic therapy), the estimates and direction of effect were similar to crude results. Results suggest that BSI caused by K. aerogenes may have a better prognosis than E. cloacae or K. pneumoniae BSI.
Sections du résumé
BACKGROUND
BACKGROUND
Klebsiella aerogenes has been reclassified from Enterobacter to Klebsiella genus due to its phenotypic and genotypic similarities with Klebsiella pneumoniae. It is unclear if clinical outcomes are also more similar. This study aims to assess clinical outcomes of bloodstreams infections (BSI) caused by K. aerogenes, K. pneumoniae and Enterobacter cloacae, through secondary data analysis, nested in PRO-BAC cohort study.
METHODS
METHODS
Hospitalized patients between October 2016 and March 2017 with monomicrobial BSI due to K. aerogenes, K. pneumoniae or E. cloacae were included. Primary outcome was a composite clinical outcome including all-cause mortality or recurrence until 30 days follow-up. Secondary outcomes were fever ≥ 72 h, persistent bacteraemia, and secondary device infection. Multilevel mixed-effect Poisson regression was used to estimate the association between microorganisms and outcome.
RESULTS
RESULTS
Overall, 29 K. aerogenes, 77 E. cloacae and 337 K. pneumoniae BSI episodes were included. Mortality or recurrence was less frequent in K. aerogenes (6.9%) than in E. cloacae (20.8%) or K. pneumoniae (19.0%), but statistical difference was not observed (rate ratio (RR) 0.35, 95% CI 0.08 to 1.55; RR 0.42, 95% CI 0.10 to 1.71, respectively). Fever ≥ 72 h and device infection were more common in K. aerogenes group. In the multivariate analysis, adjusted for confounders (age, sex, BSI source, hospital ward, Charlson score and active antibiotic therapy), the estimates and direction of effect were similar to crude results.
CONCLUSIONS
CONCLUSIONS
Results suggest that BSI caused by K. aerogenes may have a better prognosis than E. cloacae or K. pneumoniae BSI.
Identifiants
pubmed: 38711045
doi: 10.1186/s12941-024-00700-8
pii: 10.1186/s12941-024-00700-8
doi:
Substances chimiques
Anti-Bacterial Agents
0
Types de publication
Journal Article
Multicenter Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
42Subventions
Organisme : Plan Nacional de I + D + i 2013-2016, Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades
ID : PI16/01432
Organisme : Spanish Network for Research in Infectious Diseases (REIPI)
ID : RD16/0016/0001
Organisme : Spanish Network for Research in Infectious Diseases (REIPI)
ID : RD16/0016/0008
Investigateurs
Eva Leon
(E)
Inés Pérez Camacho
(IP)
David Vinuesa García
(DV)
Jordi Cuquet Pedragosa
(JC)
Isabel María Reche Molina
(IMR)
Alberto Bahamonde-Carrasco
(A)
Carmen Herrero Rodríguez
(CH)
Marcos Guzmán García
(MG)
Antonio Sánchez-Porto
(A)
Alejandro Smithson Amat
(AS)
Esperanza Merino de Lucas
(EM)
Jesús Canueto Quintero
(JC)
Informations de copyright
© 2024. The Author(s).
Références
Goto M, Al-Hasan MN. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin Microbiol Infect. 2013;19(6):501–9.
pubmed: 23473333
doi: 10.1111/1469-0691.12195
Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022;399(10325):629–55.
doi: 10.1016/S0140-6736(21)02724-0
Digiovine B, Chenoweth C, Watts C, Higgins M. The attributable mortality and costs of primary nosocomial bloodstream infections in the intensive care unit. Am J Respir Crit Care Med. 1999;160(3):976–81.
pubmed: 10471627
doi: 10.1164/ajrccm.160.3.9808145
Riu M, Chiarello P, Terradas R, Sala M, Garcia-Alzorriz E, Castells X, et al. Cost attributable to nosocomial bacteremia: analysis according to microorganism and antimicrobial sensitivity in a University Hospital in Barcelona. PLoS ONE. 2016;11(4): e0153076.
pubmed: 27055117
pmcid: 4824502
doi: 10.1371/journal.pone.0153076
Albrecht SJ, Fishman NO, Kitchen J, Nachamkin I, Bilker WB, Hoegg C, et al. Reemergence of gram-negative health care-associated bloodstream infections. Arch Intern Med. 2006;166(12):1289–94.
pubmed: 16801511
doi: 10.1001/archinte.166.12.1289
Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 2019;63(7):e00355-e419.
pubmed: 31010862
pmcid: 6591610
doi: 10.1128/AAC.00355-19
Lai CC, Chen YH, Lin SH, Chung KP, Sheng WH, Ko WC, et al. Changing aetiology of healthcare-associated bloodstream infections at three medical centres in Taiwan, 2000–2011. Epidemiol Infect. 2014;142(10):2180–5.
pubmed: 25116133
doi: 10.1017/S0950268813003166
Pfaller MA, Jones RN, Doern GV, Kugler K, Group TSP. Bacterial pathogens isolated from patients with bloodstream infection: frequencies of occurrence and antimicrobial susceptibility patterns from the SENTRY antimicrobial surveillance program (United States and Canada, 1997). Antimicrob Agents Chemother. 1998;42(7):1762–70.
pubmed: 9661018
pmcid: 105680
doi: 10.1128/AAC.42.7.1762
Pien BC, Sundaram P, Raoof N, Costa SF, Mirrett S, Woods CW, et al. The clinical and prognostic importance of positive blood cultures in adults. Am J Med. 2010;123(9):819–28.
pubmed: 20800151
doi: 10.1016/j.amjmed.2010.03.021
Rodríguez-Créixems M, Alcalá L, Muñoz P, Cercenado E, Vicente T, Bouza E. Bloodstream infections: evolution and trends in the microbiology workload, incidence, and etiology, 1985–2006. Medicine. 2008;87(4):234.
pubmed: 18626306
doi: 10.1097/MD.0b013e318182119b
Uslan DZ, Crane SJ, Steckelberg JM, Cockerill FR, St. Sauver JL, Wilson WR, et al. Age- and sex-associated trends in bloodstream infection: a population-based study in Olmsted county, Minnesota. Arch Int Med. 2007;167(8):834–9.
doi: 10.1001/archinte.167.8.834
Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39(3):309–17.
pubmed: 15306996
doi: 10.1086/421946
Yinnon AM, Butnaru A, Raveh D, Jerassy Z, Rudensky B. Klebsiella bacteraemia: community versus nosocomial infection. QJM. 1996;89(12):933–41.
pubmed: 9015487
doi: 10.1093/qjmed/89.12.933
Aydin M, Ergonul O, Azap A, Bilgin H, Aydin G, Cavus SA, et al. Rapid emergence of colistin resistance and its impact on fatality among healthcare-associated infections. J Hosp Infect. 2018;98(3):260–3.
pubmed: 29248504
doi: 10.1016/j.jhin.2017.11.014
Kang CI, Kim SH, Bang JW, Kim HB, Kim NJ, Kim EC, et al. Community-acquired versus nosocomial Klebsiella pneumoniae bacteremia: clinical features, treatment outcomes, and clinical implication of antimicrobial resistance. J Korean Med Sci. 2006;21(5):816–22.
pubmed: 17043412
pmcid: 2721989
doi: 10.3346/jkms.2006.21.5.816
Meatherall BL, Gregson D, Ross T, Pitout JDD, Laupland KB. Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia. Am J Med. 2009;122(9):866–73.
pubmed: 19699383
doi: 10.1016/j.amjmed.2009.03.034
Qureshi ZA, Paterson DL, Potoski BA, Kilayko MC, Sandovsky G, Sordillo E, et al. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother. 2012;56(4):2108–13.
pubmed: 22252816
pmcid: 3318350
doi: 10.1128/AAC.06268-11
Tsay RW, Siu LK, Fung CP, Chang FY. Characteristics of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection: risk factor for mortality and the impact of capsular serotypes as a herald for community-acquired infection. Arch Intern Med. 2002;162(9):1021–7.
pubmed: 11996612
doi: 10.1001/archinte.162.9.1021
Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob. 2017;29(16):18.
doi: 10.1186/s12941-017-0191-3
Zarkotou O, Pournaras S, Tselioti P, Dragoumanos V, Pitiriga V, Ranellou K, et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect. 2011;17(12):1798–803.
pubmed: 21595793
doi: 10.1111/j.1469-0691.2011.03514.x
Chow JW, Fine MJ, Shlaes DM, Quinn JP, Hooper DC, Johnson MP, et al. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med. 1991;115(8):585–90.
pubmed: 1892329
doi: 10.7326/0003-4819-115-8-585
Lee CC, Lee NY, Yan JJ, Lee HC, Chen PL, Chang CM, et al. Bacteremia due to extended-spectrum-β-lactamase-producing enterobacter cloacae: role of carbapenem therapy. Antimicrob Agents Chemother. 2010;54(9):3551–6.
pubmed: 20547798
pmcid: 2935029
doi: 10.1128/AAC.00055-10
Liu C, Wang N, Lee C, Weng L, Tseng H, Liu C, et al. Nosocomial and community-acquired Enterobacter cloacae bloodstream infection: risk factors for and prevalence of SHV-12 in multiresistant isolates in a medical centre. J Hosp Infect. 2004;58(1):63–77.
pubmed: 15350716
doi: 10.1016/j.jhin.2004.04.019
Siedner M, Galar A, Guzman-Suarez B, Kubiak D, Baghdady N, Ferraro M, et al. Cefepime vs other antibacterial agents for the treatment of Enterobacter species bacteremia. Clin Infect Dis. 2014;58(11):1554–63.
pubmed: 24647022
pmcid: 4017896
doi: 10.1093/cid/ciu182
Harris P, Peri A, Pelecanos A, Hughes C, Paterson D, Ferguson J. Risk factors for relapse or persistence of bacteraemia caused by Enterobacter spp.: a case-control study. Antimicrob Resist Infect Control. 2017;6:1–8.
doi: 10.1186/s13756-017-0177-0
Qureshi ZA, Paterson DL, Pakstis DL, Adams-Haduch JM, Sandkovsky G, Sordillo E, et al. Risk factors and outcome of extended-spectrum β-lactamase-producing Enterobacter cloacae bloodstream infections. Int J Antimicrob Agents. 2011;37(1):26–32.
pubmed: 21075605
doi: 10.1016/j.ijantimicag.2010.09.009
Chang EP, Chiang DH, Lin ML, Chen TL, Wang FD, Liu CY. Clinical characteristics and predictors of mortality in patients with Enterobacter aerogenes bacteremia. J Microbiol Immunol Infect. 2009;42(4):329–35.
pubmed: 19949757
Bascomb S, Lapage SP, Willcox WR, Curtis MA. Numerical classification of the tribe Klebsielleae. Microbiology. 1971;66(3):279–95.
Chavda KD, Chen L, Fouts DE, Sutton G, Brinkac L, Jenkins SG, et al. Comprehensive genome analysis of carbapenemase-producing Enterobacter spp.: new insights into phylogeny, population structure, and resistance mechanisms. mBio. 2016;7(6):e02093-16.
pubmed: 27965456
pmcid: 5156309
doi: 10.1128/mBio.02093-16
Diene SM, Merhej V, Henry M, El Filali A, Roux V, Robert C, et al. The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new ‘killer bugs’ are created because of a sympatric lifestyle. Mol Biol Evol. 2013;30(2):369–83.
pubmed: 23071100
doi: 10.1093/molbev/mss236
Izard D, Gavini F, Trinel PA, Krubwa F, Leclerc H. Contribution of DNA–DNA hybridization to the transfer of Enterobacter aerogenes to the Genus Klebsiella as K mobilis. Zentralblatt für Bakteriologie: I Abt Originale C: Allgemeine, angewandte und ökologische Mikrobiologie. 1980;1(3):257–63.
doi: 10.1016/S0172-5564(80)80006-6
Davin-Regli A, Lavigne JP, Pagès JM. Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin Microbiol Rev. 2019;32(4):e00002-19.
pubmed: 31315895
pmcid: 6750132
doi: 10.1128/CMR.00002-19
Tindall BJ, Sutton G, Garrity GM. Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) share the same nomenclatural type (ATCC 13048) on the Approved Lists and are homotypic synonyms, with consequences for the name Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980). Int J Syst Evolut Microbiol. 2017;67(2):502–4.
doi: 10.1099/ijsem.0.001572
Azevedo PAA, Furlan JPR, Oliveira-Silva M, Nakamura-Silva R, Gomes CN, Costa KRC, et al. Detection of virulence and β-lactamase encoding genes in Enterobacter aerogenes and Enterobacter cloacae clinical isolates from Brazil. Braz J Microbiol. 2018;49(Suppl 1):224–8.
pubmed: 29858139
pmcid: 6328715
doi: 10.1016/j.bjm.2018.04.009
Compain F, Babosan A, Brisse S, Genel N, Audo J, Ailloud F, et al. Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J Clin Microbiol. 2014;52(12):4377–80.
pubmed: 25275000
pmcid: 4313302
doi: 10.1128/JCM.02316-14
El Fertas-Aissani R, Messai Y, Alouache S, Bakour R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol. 2013;61(5):209–16.
pubmed: 23218835
doi: 10.1016/j.patbio.2012.10.004
Álvarez-Marín R, Lepe JA, Gasch-Blasi O, Rodríguez-Martínez JM, Calvo-Montes J, Lara-Contreras R, et al. Clinical characteristics and outcome of bacteraemia caused by Enterobacter cloacae and Klebsiella aerogenes: more similarities than differences. J Glob Antimicrob Resist. 2021;25:351–8.
pubmed: 33964492
doi: 10.1016/j.jgar.2021.04.008
Jeon M, Huh K, Ko JH, Cho SY, Huh HJ, Lee NY, et al. Difference in the clinical outcome of bloodstream infections caused by Klebsiella aerogenes and Enterobacter cloacae complex. Open Forum Infect Dis. 2021;8(8): ofab390.
pubmed: 34409124
pmcid: 8364985
doi: 10.1093/ofid/ofab390
Song EH, Park KH, Jang EY, Lee EJ, Chong YP, Cho OH, et al. Comparison of the clinical and microbiologic characteristics of patients with Enterobacter cloacae and Enterobacter aerogenes bacteremia: a prospective observation study. Diagn Microbiol Infect Dis. 2010;66(4):436–40.
pubmed: 20071128
doi: 10.1016/j.diagmicrobio.2009.11.007
Wesevich A, Sutton G, Ruffin F, Park LP, Fouts DE, Fowler VG, et al. Newly named Klebsiella aerogenes (formerly Enterobacter aerogenes) is associated with poor clinical outcomes relative to other Enterobacter species in patients with bloodstream infection. J Clin Microbiol. 2020;58(9):e00582-e620.
pubmed: 32493786
pmcid: 7448666
doi: 10.1128/JCM.00582-20
Pérez-Crespo PMM, Lanz-García JF, Bravo-Ferrer J, Cantón-Bulnes ML, Sousa Domínguez A, Goikoetxea Aguirre J, et al. Revisiting the epidemiology of bloodstream infections and healthcare-associated episodes: results from a multicentre prospective cohort in Spain (PRO-BAC Study). Int J Antimicrob Agents. 2021;58(1):106352.
pubmed: 33961992
doi: 10.1016/j.ijantimicag.2021.106352
Mussa M, Martínez Pérez-Crespo PM, Lopez-Cortes LE, Retamar-Gentil P, Sousa-Dominguez A, Goikoetxea-Aguirre AJ, et al. Risk factors and predictive score for bacteremic biliary tract infections due to Enterococcus faecalis and Enterococcus faecium: a multicenter cohort study from the PROBAC project. Microbiol Spectr. 2022;10(4):e00051-e122.
pubmed: 35771010
pmcid: 9431494
doi: 10.1128/spectrum.00051-22
Silva JT, Montoro J, Pérez-Jacoiste Asín MA, Fernández-Ruiz M, Polanco N, González E, et al. A joint program of antimicrobial stewardship and hospital-acquired infection control to reduce healthcare-associated infections after kidney transplantation: the Hipomenes study. Am J Transplant. 2023;S1600–6135(23):00581–6.
Bansal N, Goyal P, Basu D, Batra U, Sachdeva N, Joga S, et al. Impact of improving infection control and antibiotic stewardship practices on nosocomial infections and antimicrobial resistance in an oncology centre from India. Indian J Med Microbiol. 2023;45:100383.
pubmed: 37573060
doi: 10.1016/j.ijmmb.2023.100383
Harris PNA, McNamara JF, Lye DC, Davis JS, Bernard L, Cheng AC, et al. Proposed primary endpoints for use in clinical trials that compare treatment options for bloodstream infection in adults: a consensus definition. Clin Microbiol Infect. 2017;23(8):533–41.
pubmed: 27810466
doi: 10.1016/j.cmi.2016.10.023
Timsit JF, de Kraker MEA, Sommer H, Weiss E, Bettiol E, Wolkewitz M, et al. Appropriate endpoints for evaluation of new antibiotic therapies for severe infections: a perspective from COMBACTE’s STAT-Net. Intensive Care Med. 2017;43(7):1002–12.
pubmed: 28466147
pmcid: 5487537
doi: 10.1007/s00134-017-4802-4
Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10(1):37–48.
pubmed: 9888278
doi: 10.1097/00001648-199901000-00008
Victora CG, Huttly SR, Fuchs SC, Olinto MT. The role of conceptual frameworks in epidemiological analysis: a hierarchical approach. Int J Epidemiol. 1997;26(1):224–7.
pubmed: 9126524
doi: 10.1093/ije/26.1.224