Nitrous oxide respiration in acidophilic methanotrophs.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
18 May 2024
Historique:
received: 03 01 2024
accepted: 22 04 2024
medline: 19 5 2024
pubmed: 19 5 2024
entrez: 18 5 2024
Statut: epublish

Résumé

Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (N

Identifiants

pubmed: 38762502
doi: 10.1038/s41467-024-48161-z
pii: 10.1038/s41467-024-48161-z
doi:

Substances chimiques

nitrous oxide reductase 0
methane monooxygenase 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4226

Informations de copyright

© 2024. The Author(s).

Références

IPCC. Summary for Policymakers. In: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (ed Intergovernmental Panel on Climate C). (Cambridge University Press, 2023).
Forster, P. et al. The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou) (Cambridge University Press United Kingdom and New York, NY, USA, 2023).
Prinn, R. G. et al. Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophys. Res. Lett. 32, L07809 (2005).
doi: 10.1029/2004GL022228
Myhre, G. et al. Anthropogenic and natural radiative forcing. in Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (eds Stocker T. F., et al.) (Cambridge University Press, 2013).
Szopa, S. et al. Short-Lived Climate Forcers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte V., et al.) (Cambridge University Press, 2021).
Prather, M. J. et al. Measuring and modeling the lifetime of nitrous oxide including its variability. J. Geophys. Res. Atmos. 120, 5693–5705 (2015).
pubmed: 26900537 pmcid: 4744722 doi: 10.1002/2015JD023267
Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N
pubmed: 19713491 doi: 10.1126/science.1176985
Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. Non-CO
pubmed: 21814274 doi: 10.1038/nature10322
Canadell, J. G. et al. Global Carbon and Other Biogeochemical Cycles and Feedbacks. In Climate Change 2021:The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou) (Cambridge University Press, 2021).
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130122 (2013).
pubmed: 23713120 pmcid: 3682742 doi: 10.1098/rstb.2013.0122
Ringeval, B. et al. Climate-CH
doi: 10.5194/bg-8-2137-2011
Beaulieu, J. J., DelSontro, T. & Downing, J. A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat. Commun. 10, 1375 (2019).
pubmed: 30914638 pmcid: 6435651 doi: 10.1038/s41467-019-09100-5
Murrell, J. C. & Jetten, M. S. The microbial methane cycle. Environ. Microbiol. Rep. 1, 279–284 (2009).
pubmed: 23765880 doi: 10.1111/j.1758-2229.2009.00089.x
Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009).
pubmed: 23765881 doi: 10.1111/j.1758-2229.2009.00038.x
Bürgmann, H. Methane oxidation (aerobic). in Encyclopedia of Geobiology, (eds Reitner, J., Thiel, V.) (Springer Netherlands, 2011).
Leu, A. O. et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J. 14, 1030–1041 (2020).
pubmed: 31988473 pmcid: 7082337 doi: 10.1038/s41396-020-0590-x
Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567 (2013).
pubmed: 23892779 doi: 10.1038/nature12375
Scheller, S., Yu, H., Chadwick, G. L., McGlynn, S. E. & Orphan, V. J. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703–707 (2016).
pubmed: 26912857 doi: 10.1126/science.aad7154
Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. USA 113, 12792–12796 (2016).
pubmed: 27791118 pmcid: 5111651 doi: 10.1073/pnas.1609534113
Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010).
pubmed: 20336137 doi: 10.1038/nature08883
Kits, K. D., Campbell, D. J., Rosana, A. R. & Stein, L. Y. Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Front. Microbiol. 6, 1072–1072 (2015).
pubmed: 26500622 pmcid: 4594100 doi: 10.3389/fmicb.2015.01072
Kits, K. D., Klotz, M. G. & Stein, L. Y. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ. Microbiol. 17, 3219–3232 (2015).
pubmed: 25580993 doi: 10.1111/1462-2920.12772
Dam, B., Kube, M., Dam, S., Reinhardt, R. & Liesack, W. Complete sequence analysis of two methanotroph-specific repABC-containing plasmids from Methylocystis sp. strain SC2. Appl. Environ. Microbiol. 78, 4373–4379 (2012).
pubmed: 22504811 pmcid: 3370566 doi: 10.1128/AEM.00628-12
Kox, M. A. R. et al. Complete genome sequence of the aerobic facultative methanotroph Methylocella tundrae strain T4. Microbiol. Resour. Announc. 8, e00286–00219 (2019).
pubmed: 31097502 pmcid: 6522787 doi: 10.1128/MRA.00286-19
Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).
pubmed: 33028999 doi: 10.1038/s41586-020-2780-0
Thomson, A. J., Giannopoulos, G., Pretty, J., Baggs, E. M. & Richardson, D. J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1157–1168 (2012).
pubmed: 22451101 pmcid: 3306631 doi: 10.1098/rstb.2011.0415
Buessecker, S. et al. Coupled abiotic-biotic cycling of nitrous oxide in tropical peatlands. Nat. Ecol. Evol. 6, 1881–1890 (2022).
pubmed: 36202923 doi: 10.1038/s41559-022-01892-y
Su, Q., Domingo-Félez, C., Jensen, M. M. & Smets, B. F. Abiotic nitrous oxide (N
pubmed: 30816038 doi: 10.1021/acs.est.8b06193
Zumft, W. G. & Kroneck, P. M. Respiratory transformation of nitrous oxide (N
pubmed: 17027372 doi: 10.1016/S0065-2911(06)52003-X
Graf, D. R., Jones, C. M. & Hallin, S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N
pubmed: 25436772 pmcid: 4250227 doi: 10.1371/journal.pone.0114118
Sanford, R. A. et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc. Natl Acad. Sci. USA 109, 19709–19714 (2012).
pubmed: 23150571 pmcid: 3511753 doi: 10.1073/pnas.1211238109
Hallin, S., Philippot, L., Löffler, F. E., Sanford, R. A. & Jones, C. M. Genomics and ecology of novel N
pubmed: 28803698 doi: 10.1016/j.tim.2017.07.003
Payne, W. J., Grant, M. A., Shapleigh, J. & Hoffman, P. Nitrogen oxide reduction in Wolinella succinogenes and Campylobacter species. J. Bacteriol. 152, 915–918 (1982).
pubmed: 7130133 pmcid: 221551 doi: 10.1128/jb.152.2.915-918.1982
Yoon, S., Nissen, S., Park, D., Sanford, R. A. & Löffler, F. E. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I NosZ from those harboring clade II NosZ. Appl. Environ. Microbiol. 82, 3793–3800 (2016).
pubmed: 27084012 pmcid: 4907195 doi: 10.1128/AEM.00409-16
Park, D., Kim, H. & Yoon, S. Nitrous oxide reduction by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27. Appl. Environ. Microbiol. 83, e00502–00517 (2017).
pubmed: 28389533 pmcid: 5452805 doi: 10.1128/AEM.00502-17
Dam, B., Dam, S., Blom, J. & Liesack, W. Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2. PLOS ONE 8, e74767 (2013).
pubmed: 24130670 pmcid: 3794950 doi: 10.1371/journal.pone.0074767
Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 1346 (2015).
pubmed: 26696968 pmcid: 4678205 doi: 10.3389/fmicb.2015.01346
Reim, A., Lüke, C., Krause, S., Pratscher, J. & Frenzel, P. One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic–anoxic interface in a flooded paddy soil. ISME J. 6, 2128–2139 (2012).
pubmed: 22695859 pmcid: 3475382 doi: 10.1038/ismej.2012.57
Farhan Ul Haque, M., Crombie, A. T. & Murrell, J. C. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps. Microbiome 7, 134 (2019).
pubmed: 31585550 pmcid: 6778391 doi: 10.1186/s40168-019-0741-3
Kantor, R. S., Miller, S. E. & Nelson, K. L. The water microbiome through a pilot scale advanced treatment facility for direct potable reuse. Front. Microbiol. 10, 993 (2019).
pubmed: 31139160 pmcid: 6517601 doi: 10.3389/fmicb.2019.00993
McGuirl, M. A., Bollinger, J. A., Cosper, N., Scott, R. A. & Dooley, D. M. Expression, purification, and characterization of NosL, a novel Cu(I) protein of the nitrous oxide reductase (nos) gene cluster. J. Biol. Inorg. Chem. 6, 189–195 (2001).
pubmed: 11293413 doi: 10.1007/s007750000190
Kang, C. S., Dunfield, P. F. & Semrau, J. D. The origin of aerobic methanotrophy within the Proteobacteria. FEMS Microbiol. Lett. 366, fnz096 (2019).
pubmed: 31054238 doi: 10.1093/femsle/fnz096
Berks, B. C., Palmer, T. & Sargent, F. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr. Opin. Microbiol. 8, 174–181 (2005).
pubmed: 15802249 doi: 10.1016/j.mib.2005.02.010
Awala, S. I. et al. Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone. ISME J. 15, 3636–3647 (2021).
pubmed: 34158629 pmcid: 8630023 doi: 10.1038/s41396-021-01037-2
Zhang, L., Trncik, C., Andrade, S. L. A. & Einsle, O. The flavinyl transferase ApbE of Pseudomonas stutzeri matures the NosR protein required for nitrous oxide reduction. Biochim. Biophys. Acta Bioenerg. 1858, 95–102 (2017).
pubmed: 27864152 doi: 10.1016/j.bbabio.2016.11.008
Honisch, U. & Zumft, W. G. Operon structure and regulation of the nos gene region of Pseudomonas stutzeri, encoding an ABC-Type ATPase for maturation of nitrous oxide reductase. J. Bacteriol. 185, 1895–1902 (2003).
pubmed: 12618453 pmcid: 150149 doi: 10.1128/JB.185.6.1895-1902.2003
Simon, J., Einsle, O., Kroneck, P. M. & Zumft, W. G. The unprecedented nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase. FEBS Lett. 569, 7–12 (2004).
pubmed: 15225600 doi: 10.1016/j.febslet.2004.05.060
Suzuki, M., Cui, Z. J., Ishii, M. & Igarashi, Y. Nitrate respiratory metabolism in an obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6. Arch. Microbiol. 175, 75–78 (2001).
pubmed: 11271424 doi: 10.1007/s002030000230
Sharp, C. E., den Camp, H.J.M.O., Tamas, I., Dunfield P. F. Unusual members of the PVC superphylum: the methanotrophic Verrucomicrobia genus “Methylacidiphilum”. in Planctomycetes: cell structure, origins and biology (ed Fuerst, J. A.) (Humana Press, 2013).
Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6, 246–256 (2021).
pubmed: 33398096 doi: 10.1038/s41564-020-00811-w
Dedysh, S. N., Knief, C. & Dunfield, P. F. Methylocella species are facultatively methanotrophic. J. Bacteriol. 187, 4665–4670 (2005).
pubmed: 15968078 pmcid: 1151763 doi: 10.1128/JB.187.13.4665-4670.2005
Awala, S. I. et al. Methylacidiphilum caldifontis gen. nov., sp. nov., a thermoacidophilic methane-oxidizing bacterium from an acidic geothermal environment, and descriptions of the family Methylacidiphilaceae fam. nov. and order Methylacidiphilales ord. nov. Int. J. Syst. Evol. Microbiol. 73, 006085 (2023).
doi: 10.1099/ijsem.0.006085
Thauer, R. K., Jungermann, K. & Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977).
pubmed: 860983 pmcid: 413997 doi: 10.1128/br.41.1.100-180.1977
Svensson-Ek, M. et al. The X-ray crystal structures of wild-type and EQ (I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J. Mol. Biol. 321, 329–339 (2002).
pubmed: 12144789 doi: 10.1016/S0022-2836(02)00619-8
Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660–669 (1995).
pubmed: 7651515 doi: 10.1038/376660a0
Chen, J. & Strous, M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochim. Biophys. Acta Bioenerg. 1827, 136–144 (2013).
doi: 10.1016/j.bbabio.2012.10.002
Bergaust, L., Mao, Y., Bakken, L. R. & Frostegård, A. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrous oxide reductase in Paracoccus denitrificans. Appl. Environ. Microbiol. 76, 6387–6396 (2010).
pubmed: 20709842 pmcid: 2950438 doi: 10.1128/AEM.00608-10
Van den Heuvel, R. N., Bakker, S. E., Jetten, M. S. & Hefting, M. M. Decreased N
pubmed: 21504539 doi: 10.1111/j.1472-4669.2011.00276.x
Palmer, K., Drake, H. L. & Horn, M. A. Association of novel and highly diverse acid-tolerant denitrifiers with N
pubmed: 20023077 doi: 10.1128/AEM.02256-09
Brenzinger, K., Dörsch, P. & Braker, G. pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil. Front. Microbiol. 6, 961 (2015).
pubmed: 26441895 pmcid: 4585170 doi: 10.3389/fmicb.2015.00961
Lycus, P. et al. Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy. ISME J. 11, 2219–2232 (2017).
pubmed: 28696424 pmcid: 5607364 doi: 10.1038/ismej.2017.82
Almeida, J. S., Júlio, S. M., Reis, M. A. & Carrondo, M. J. Nitrite inhibition of denitrification by Pseudomonas fluorescens. Biotechnol. Bioeng. 46, 194–201 (1995).
pubmed: 18623304 doi: 10.1002/bit.260460303
Fang, F. C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2, 820–832 (2004).
pubmed: 15378046 doi: 10.1038/nrmicro1004
Bueno, E., Sit, B., Waldor, M. K. & Cava, F. Anaerobic nitrate reduction divergently governs population expansion of the enteropathogen Vibrio cholerae. Nat. Microbiol. 3, 1346–1353 (2018).
pubmed: 30275512 pmcid: 6443258 doi: 10.1038/s41564-018-0253-0
Vadivelu, V. M., Keller, J. & Yuan, Z. Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter. Water Sci Technol. 56, 89–97 (2007).
pubmed: 17951872 doi: 10.2166/wst.2007.612
Zhu-Barker, X., Cavazos, A. R., Ostrom, N. E., Horwath, W. R. & Glass, J. B. The importance of abiotic reactions for nitrous oxide production. Biogeochemistry 126, 251–267 (2015).
doi: 10.1007/s10533-015-0166-4
Cole, J. Anaerobic bacterial response to nitric oxide stress: Widespread misconceptions and physiologically relevant responses. Mol. Microbiol. 116, 29–40 (2021).
pubmed: 33706420 doi: 10.1111/mmi.14713
Auclair, J., Lépine, F., Parent, S. & Villemur, R. Dissimilatory reduction of nitrate in seawater by a Methylophaga strain containing two highly divergent narG sequences. ISME J. 4, 1302–1313 (2010).
pubmed: 20393572 doi: 10.1038/ismej.2010.47
Kamps, J. J., Hopkinson, R. J., Schofield, C. J. & Claridge, T. D. How formaldehyde reacts with amino acids. Commun. Chem. 2, 126 (2019).
doi: 10.1038/s42004-019-0224-2
Dedysh, S. N. & Dunfield, P. F. Facultative and obligate methanotrophs:how to identify and differentiate them.Methods Enzymol. 495, 31–44 (2011).
pubmed: 21419913 doi: 10.1016/B978-0-12-386905-0.00003-6
Purchase, M. L., Bending, G. D. & Mushinski, R. M. Spatiotemporal variations of soil reactive nitrogen oxide fluxes across the anthropogenic landscape. Environ. Sci. Technol. 57, 16348–16360 (2023).
pubmed: 37856795 pmcid: 10620987 doi: 10.1021/acs.est.3c05849
Pauleta, S. R., Dell’Acqua, S. & Moura, I. Nitrous oxide reductase. Coord. Chem. Rev. 257, 332–349 (2013).
doi: 10.1016/j.ccr.2012.05.026
Wang, Z., Vishwanathan, N., Kowaliczko, S. & Ishii, S. Clarifying microbial nitrous oxide reduction under aerobic conditions: tolerant, intolerant, and sensitive. Microbiol. Spectr. 11, e0470922 (2023).
pubmed: 36926990 doi: 10.1128/spectrum.04709-22
Suenaga, T., Riya, S., Hosomi, M. & Terada, A. Biokinetic characterization and activities of N
pubmed: 29692767 pmcid: 5902568 doi: 10.3389/fmicb.2018.00697
Hilgeri, H. & Humer, M. Biotic landfill cover treatments for mitigating methane emissions. Environ. Monit. Assess. 84, 71–84 (2003).
pubmed: 12733810 doi: 10.1023/A:1022878830252
Ross, M. O. & Rosenzweig, A. C. A tale of two methane monooxygenases. J. Biol. Inorg. Chem. 22, 307–319 (2017).
pubmed: 27878395 doi: 10.1007/s00775-016-1419-y
Hein, S., Witt, S. & Simon, J. Clade II nitrous oxide respiration of Wolinella succinogenes depends on the NosG, -C1, -C2, -H electron transport module, NosB and a Rieske/cytochrome bc complex. Environ. Microbiol. 19, 4913–4925 (2017).
pubmed: 28925551 doi: 10.1111/1462-2920.13935
Keltjens, J. T., Pol, A., Reimann, J. & Op den Camp, H. J. M. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl. Microbiol. Biotechnol. 98, 6163–6183 (2014).
pubmed: 24816778 doi: 10.1007/s00253-014-5766-8
Sirota, F. L., Maurer-Stroh, S., Li, Z., Eisenhaber, F. & Eisenhaber, B. Functional classification of super-large families of enzymes based on substrate binding pocket residues for biocatalysis and enzyme engineering applications. Front. Bioeng. Biotechnol. 9, 701120 (2021).
pubmed: 34409021 pmcid: 8366029 doi: 10.3389/fbioe.2021.701120
Le, T.-K., Lee, Y.-J., Han, G. H. & Yeom, S.-J. Methanol dehydrogenases as a key biocatalysts for synthetic methylotrophy. Front. Bioeng. Biotechnol. 9, 787791 (2021).
pubmed: 35004648 pmcid: 8741260 doi: 10.3389/fbioe.2021.787791
Bonnot, F., Iavarone, A. T. & Klinman, J. P. Multistep, eight-electron oxidation catalyzed by the cofactorless oxidase, PqqC: identification of chemical intermediates and their dependence on molecular oxygen. Biochemistry 52, 4667–4675 (2013).
pubmed: 23718207 doi: 10.1021/bi4003315
Matsushita, K. et al. Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ). Microbiology 143, 3149–3156 (1997).
pubmed: 9353919 doi: 10.1099/00221287-143-10-3149
Zhang, W. et al. Guidance for engineering of synthetic methylotrophy based on methanol metabolism in methylotrophy. RSC Adv. 7, 4083–4091 (2017).
doi: 10.1039/C6RA27038G
Chu, F. & Lidstrom, M. E. XoxF Acts as the predominant methanol dehydrogenase in the type I methanotroph Methylomicrobium buryatense. J .Bacteriol. 198, 1317–1325 (2016).
pubmed: 26858104 pmcid: 4859581 doi: 10.1128/JB.00959-15
Kim, H. J. & Graham, D. W. Effect of oxygen level on simultaneous nitrogenase and sMMO expression and activity in Methylosinus trichosporium OB3b and its sMMO
pubmed: 11470351 doi: 10.1111/j.1574-6968.2001.tb10746.x
Kim, H. J. & Graham, D. W. Effects of oxygen and nitrogen conditions on the transformation kinetics of 1,2-dichloroethenes by Methylosinus trichosporium OB3b and its sMMO
pubmed: 14669871 doi: 10.1023/A:1027396619596
Smirnova, A. V. & Dunfield, P. F. Differential transcriptional activation of genes encoding soluble methane monooxygenase in a facultative versus an obligate methanotroph. Microorganisms 6, 20 (2018).
pubmed: 29509697 pmcid: 5874634 doi: 10.3390/microorganisms6010020
Theisen, A. R. et al. Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol. Microbiol. 58, 682–692 (2005).
pubmed: 16238619 doi: 10.1111/j.1365-2958.2005.04861.x
Reimer, L. C., Sarda Carbasse, J., Koblitz, J., Podstawka, A. & Overmann, J. Methylocella tundrae Dedysh et al. 2004. DSMZ. https://doi.org/10.13145/bacdive1659.20230509.8.1 (2023).
Reimer, L. C., Sarda Carbasse, J., Koblitz J., Podstawka, A., Overmann, J. Methylocystis echinoides (ex Gal’chenko et al. 1977) DSMZ. https://doi.org/10.13145/bacdive169085.20230509.8.1 (2023).
Qian, H. et al. Greenhouse gas emissions and mitigation in rice agriculture. Nat. Rev. Earth Environ. 4, 716–732 (2023).
doi: 10.1038/s43017-023-00482-1
Kolb, S. & Horn, M. A. Microbial CH
pubmed: 22403579 pmcid: 3291872 doi: 10.3389/fmicb.2012.00078
Ishii, S., Ohno, H., Tsuboi, M., Otsuka, S. & Senoo, K. Identification and isolation of active N
pubmed: 21677691 pmcid: 3223309 doi: 10.1038/ismej.2011.69
Taminskas, J. et al. Climate change and water table fluctuation: Implications for raised bog surface variability. Geomorphology 304, 40–49 (2018).
doi: 10.1016/j.geomorph.2017.12.026
Ratcliffe, J. L., Campbell, D. I., Clarkson, B. R., Wall, A. M. & Schipper, L. A. Water table fluctuations control CO
pubmed: 30577098 doi: 10.1016/j.scitotenv.2018.11.151
Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).
pubmed: 33882562 doi: 10.1038/s41586-021-03523-1
Kotsyurbenko O. R., Glagolev M. V., Merkel A. Y., Sabrekov A. F., Terentieva I. E. Methanogenesis in Soils, Wetlands, and Peat. in Biogenesis of Hydrocarbons (eds Stams A. J. M., Sousa D. Z.) (Springer International Publishing, 2019).
Angle, J. C. et al. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nat. Commun. 8, 1567 (2017).
pubmed: 29146959 pmcid: 5691036 doi: 10.1038/s41467-017-01753-4
Zhu, X., Burger, M., Doane, T. A. & Horwath, W. R. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N
pubmed: 23576736 pmcid: 3631630 doi: 10.1073/pnas.1219993110
Hakobyan, A., Zhu, J., Glatter, T., Paczia, N. & Liesack, W. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs. Metab. Eng. 61, 181–196 (2020).
pubmed: 32479801 doi: 10.1016/j.ymben.2020.05.003
Widdel, F., Bak, F. Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications (eds Balows, A., Trüper, H. G., Dworkin, M., Harder, W., Schleifer, K.-H.) (Springer International Publishing, 1992).
Bellosillo, L. A. Effects of environmental factors on methanotroph communities from a forest soil, lake sediment and a landfill soil. (Chungbuk National University, 2020).
Awala, S. I. et al. Methylococcus geothermalis sp. nov., a methanotroph isolated from a geothermal field in the Republic of Korea. Int. J. Syst. Evol. Microbiol. 70, 5520–5530 (2020).
pubmed: 32910751 doi: 10.1099/ijsem.0.004442
Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991).
pubmed: 1987160 pmcid: 207061 doi: 10.1128/jb.173.2.697-703.1991
Hurt, R. A. et al. Simultaneous recovery of RNA and DNA from soils and sediments. Appl. Environ. Microbiol. 67, 4495–4503 (2001).
pubmed: 11571148 pmcid: 93195 doi: 10.1128/AEM.67.10.4495-4503.2001
Wick, R. R. et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol. 22, 266 (2021).
pubmed: 34521459 pmcid: 8442456 doi: 10.1186/s13059-021-02483-z
Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32, 2103–2110 (2016).
pubmed: 27153593 pmcid: 4937194 doi: 10.1093/bioinformatics/btw152
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).
pubmed: 30936562 doi: 10.1038/s41587-019-0072-8
Vaser, R. & Šikić, M. Time- and memory-efficient genome assembly with Raven. Nat. Comput. Sci. 1, 332–336 (2021).
pubmed: 38217213 doi: 10.1038/s43588-021-00073-4
Wick, R. R. & Holt, K. E. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput. Biol. 18, e1009802 (2022).
pubmed: 35073327 pmcid: 8812927 doi: 10.1371/journal.pcbi.1009802
Zimin, A. V. & Salzberg, S. L. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput. Biol. 16, e1007981 (2020).
pubmed: 32589667 pmcid: 7347232 doi: 10.1371/journal.pcbi.1007981
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
pubmed: 24642063 doi: 10.1093/bioinformatics/btu153
Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624 (2016).
pubmed: 27342282 pmcid: 5001611 doi: 10.1093/nar/gkw569
Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2009).
pubmed: 18940856 doi: 10.1093/nar/gkn785
Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
pubmed: 10802651 pmcid: 3037419 doi: 10.1038/75556
Consortium, T. G. O. The gene ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–d334 (2021).
doi: 10.1093/nar/gkaa1113
Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).
pubmed: 24288371 doi: 10.1093/nar/gkt1223
Lu, S. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48, D265–d268 (2020).
pubmed: 31777944 doi: 10.1093/nar/gkz991
Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371–373 (2003).
pubmed: 12520025 pmcid: 165575 doi: 10.1093/nar/gkg128
Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
pubmed: 30418610 doi: 10.1093/nar/gky1085
Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).
pubmed: 30778233 doi: 10.1038/s41587-019-0036-z
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).
pubmed: 11152613 doi: 10.1006/jmbi.2000.4315
Tu, Q., Lin, L., Cheng, L., Deng, Y. & He, Z. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics 35, 1040–1048 (2018).
doi: 10.1093/bioinformatics/bty741
Olson, R. D. et al. Introducing the bacterial and viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 51, D678–D689 (2022).
pmcid: 9825582 doi: 10.1093/nar/gkac1003
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
pubmed: 23329690 pmcid: 3603318 doi: 10.1093/molbev/mst010
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
pubmed: 33885785 pmcid: 8265157 doi: 10.1093/nar/gkab301
Bertelli, C. et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 45, W30–w35 (2017).
pubmed: 28472413 pmcid: 5570257 doi: 10.1093/nar/gkx343
Onley, J. R., Ahsan, S., Sanford, R. A. & Löffler, F. E. Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Appl. Environ. Microbiol. 84, e01985–01917 (2018).
pubmed: 29196287 pmcid: 5795083 doi: 10.1128/AEM.01985-17
Miranda, K. M., Espey, M. G. & Wink, D. A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5, 62–71 (2001).
pubmed: 11178938 doi: 10.1006/niox.2000.0319
Muyzer, G., De Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).
pubmed: 7683183 pmcid: 202176 doi: 10.1128/aem.59.3.695-700.1993
Andrews, S. FastQC: a quality control tool for high throughput sequence data http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).
pubmed: 23071270 doi: 10.1093/bioinformatics/bts611
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2014).
pubmed: 25260700 pmcid: 4287950 doi: 10.1093/bioinformatics/btu638
Hein, S. & Simon, J. Bacterial nitrous oxide respiration: electron transport chains and copper transfer reactions. Adv .Microb. Physiol. 75, 137–175 (2019).
pubmed: 31655736 doi: 10.1016/bs.ampbs.2019.07.001
Torres, M. J. et al. Nitrous oxide metabolism in nitrate-reducing bacteria: physiology and regulatory mechanisms. Adv. Microb. Physiol. 68, 353–432 (2016).
pubmed: 27134026 doi: 10.1016/bs.ampbs.2016.02.007

Auteurs

Samuel Imisi Awala (SI)

Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
Center for Ecology and Environmental Toxicology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, South Korea.

Joo-Han Gwak (JH)

Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.

Yongman Kim (Y)

Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.

Man-Young Jung (MY)

Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea.
Department of Science Education, Jeju National University, Jeju, Republic of Korea.
Jeju Microbiome Center, Jeju National University, Jeju, Republic of Korea.

Peter F Dunfield (PF)

Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.

Michael Wagner (M)

Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria.
Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.

Sung-Keun Rhee (SK)

Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea. rhees@chungbuk.ac.kr.

Articles similaires

Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus

A molecular mechanism for bright color variation in parrots.

Roberto Arbore, Soraia Barbosa, Jindich Brejcha et al.
1.00
Animals Feathers Pigmentation Parrots Aldehyde Dehydrogenase
Osteosarcoma Animals Glutathione Oxidation-Reduction Mice
Humans Pulmonary Disease, Chronic Obstructive Exercise Tolerance Male Aged

Classifications MeSH