Use of Ozone as a Substrate Treatment for the Control of Trichoderma in the Production of Pleurotus ostreatus.
Journal
Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448
Informations de publication
Date de publication:
18 May 2024
18 May 2024
Historique:
received:
25
10
2023
accepted:
04
04
2024
medline:
19
5
2024
pubmed:
19
5
2024
entrez:
18
5
2024
Statut:
epublish
Résumé
Pleurotus ostreatus is one of the most widely cultivated species in the world. It can be produced in many lignocellulosic substrates after carrying out a treatment to eliminate competing microorganisms. The most commonly used is pasteurization by steam or by immersion in hot water. The aim of this work is to evaluate if ozone can be employed as treatment for decontamination of the substrate used for the production of the edible mushroom P. ostreatus to control of green mold Trichoderma. Wheat straw was employed as a substrate. We used two different methodologies: bubbling ozone into a tank with water and the substrate, and injecting ozone into a closed tank with the substrate inside. Ten treatments were carried out including two treatments with inoculation by a spray of conidia of Trichoderma. The effect of ozone on the conidia was also evaluated. We found that the treatment of the substrate with ozone in immersed water resulted more effective (lower growth of Trichoderma) than injecting ozone into a closed tank. Anyway, we found that the contaminant fungi could grow on the substrate in both treatments with ozone. We observed that although ozone affected the conidia when it was bubbled into water, some of them still managed to survive and could germinate 72 h later. P. ostreatus could grow and produce fruiting bodies on a substrate that was previously treated with ozone and yields were not affected. Based on the results obtained, we conclude that ozone may not be an effective agent to control Trichoderma in highly contaminated substrates, at least in the experimental conditions that we used, for the production of P. ostreatus.
Identifiants
pubmed: 38762690
doi: 10.1007/s00284-024-03691-z
pii: 10.1007/s00284-024-03691-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
181Subventions
Organisme : CONICET
ID : PIP 1292
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Royse DJ, Baars J, Tan Q (2017) Current overview of mushroom production in the world. Edible Med Mushrooms Technol Appl 5–13
Lechner BE, Albertó E (2011) Search for new naturally occurring strains of Pleurotus to improve yields. P. albidus as a novel proposed species for mushroom production. Rev Iberoam Micol 28(4):148–154
doi: 10.1016/j.riam.2010.12.001
pubmed: 21241817
Philippoussis A, Diamantopoulou P (2011) Agro-food industry wastes and agricultural residues conversion into high value products by mushroom cultivation. In: Proceedings of the 7th international conference on mushroom biology and mushroom products (ICMBMP7), France, pp 4–7
Jaramillo MS, Albertó E (2013) Heat treatment of wheat straw by immersion in hot water decreases mushroom yield in Pleurotus ostreatus. Rev Iberoam Micol 30(2):125–129. https://doi.org/10.1016/j.riam.2012.11.004
doi: 10.1016/j.riam.2012.11.004
Ficior D, Indrea D, Apahidean Al S, Apahidean M, Pop R, Moldovan Z, Maniutiu D, Ganea R, Paven I (2006) Importance of substrate disinfection on oyster mushroom (Pleurotus sp.) culture. Not Bot Hort Agrobot Cluj-Napoca 34:48
Colavolpe MB, Jaramillo Mejía S, Albertó E (2014) Efficiency of treatments for controlling Trichoderma sp during spawning in mushroom cultivation. Braz J of Microbiol 45(4):1263–1270
doi: 10.1590/S1517-83822014000400017
Poppe J, Welvaert W, De Both G (1985) Diseases and their control-possibilities after ten years Pleurotus culture in Belgium. Mededelingen van de Faculteit landbouwwetenschappen. Rijksuniversiteit Gent 50(4):1097–1108
Kim JG, Yousef AE, Dave S (1999) Application of ozone for enhancing the microbiological safety and quality of foods: a review. J Food Prot 62(9):1071–1087
doi: 10.4315/0362-028X-62.9.1071
pubmed: 10492485
Zuluaga-Calderón B, González HHL, Alzamora SM, Coronel MB (2023) Multi-step ozone treatments of malting barley: effect on the incidence of Fusarium graminearum and grain germination parameters. Innov Food Sci Emerg Technol 83:103219
doi: 10.1016/j.ifset.2022.103219
Victorin K (1992) Review of the genotoxicity of ozone. Mutat Res 277(3):221–238
doi: 10.1016/0165-1110(92)90045-B
pubmed: 1381051
Gibson CA, Elliott JA, Beckett DC (1960) Ozone for controlling mold on Cheddar cheese. Can Dairy Ice Cream J 39(12):24–28
Rice RG (2005) User successes with ozone for agricultural products and food treatment. In: Proceeding of 17th world ozone congress
Antony-Babu S, Singleton I (2009) Effect of ozone on spore germination, spore production and biomass production in two Aspergillus species. Antonie Van Leeuwenhoek 96:413–422
doi: 10.1007/s10482-009-9355-2
pubmed: 19533409
Guzel-Seydim ZB, Greene AK, Seydim AC (2004) Use of ozone in the food industry. LWT-Food Sci Technol 37(4):453–460
doi: 10.1016/j.lwt.2003.10.014
Ölmez H, Akbas MY (2009) Optimization of ozone treatment of fresh-cut green leaf lettuce. J Food Eng 90(4):487–494
doi: 10.1016/j.jfoodeng.2008.07.026
Raila A, Lugauskas A, Steponavicius D, Railiene M, Stepanoviciene A, Zvicevicius E (2006) Application of ozone for reduction of mycological infection in wheat grain. Ann Agric Environ Med 13:287–294
pubmed: 17196003
Elvis AM, Ekta JS (2011) Ozone therapy: a clinical review. J Nat Sci Biol Med 2(1):66–70. https://doi.org/10.4103/0976-9668.82319
doi: 10.4103/0976-9668.82319
pubmed: 22470237
pmcid: 3312702
Körlü AE (2018) Use of ozone in the textile industry. Text Ind Environ. https://doi.org/10.5772/intechopen.81774
doi: 10.5772/intechopen.81774
Fornerisa G, Bellardib S, Palmegianoc GB, Sarogliad M, Sicuroa B, Gascoe L, Zoccaratoe I (2003) The use of ozone in trout hatchery to reduce saprolegniasis incidence. Aquaculture 221(1–4):157–166
doi: 10.1016/S0044-8486(02)00518-5
Alberti MM, Pérez-Chávez AM, Niveiro N, Albertó E (2021) Towards an optimal methodology for Basidiomes production of naturally occurring species of the genus Oudemansiella (Basidiomycetes). Curr Microbiol 78(4):1256–1266. https://doi.org/10.1007/s00284-021-02391-2
doi: 10.1007/s00284-021-02391-2
pubmed: 33635360
Jaramillo Mejía S, Albertó E (2019) Incremento de la productividad de Pleurotus ostreatus mediante el uso de inóculo como suplemento. Scientia Fungorum. https://doi.org/10.33885/sf.2019.49.1243
doi: 10.33885/sf.2019.49.1243
Sotelo JL, Beltran FJ, Benitez FJ, Beltran-Heredia J (1989) Henry’s law constant for the ozone-water system. Water Res 23(10):1239–1246
doi: 10.1016/0043-1354(89)90186-3
Glowacz M, Colgan R, Rees D (2015) The use of ozone to extend the shelf-life and maintain quality of fresh produce. J Sci Food Agric 95(4):662–671
doi: 10.1002/jsfa.6776
pubmed: 24913013
Han Y, Floros JD, Linton RH, Nielsen SS, Nelson PE (2002) Response surface modeling for the inactivation of Escherichia coli O157:H7 on green peppers (Capsicum annuum) by ozone gas treatment. J Food Sci 67:1188–1193
doi: 10.1111/j.1365-2621.2002.tb09475.x
Das E, Gurakan GC, Bayindirli A (2006) Effect of controlled atmosphere storage, modified atmosphere packaging and gaseous ozone treatment on the survival of Salmonella enteritidis on cherry tomatoes. Food Microbiol 23:430–438
doi: 10.1016/j.fm.2005.08.002
pubmed: 16943034
Kim JG, Yousef AE, Chism GW (1999) Use of ozone to inactivate microorganisms on lettuce. J Food Saf 19(1):17–34
doi: 10.1111/j.1745-4565.1999.tb00231.x
De Oliveira Souza SM, de Alencar ER, Ribeiro JL, de Aguiar FM (2019) Inactivation of Escherichia coli O157: H7 by ozone in different substrates. Braz J Microbiol 50:247–253
doi: 10.1007/s42770-018-0025-2
pubmed: 30637637
Sharpe D, Fan L, McRae K, Walker B, MacKay R, Doucette C (2009) Effects of ozone treatment on Botrytis cinerea and Sclerotinia sclerotiorum in relation to horticultural product quality. J Food Sci 74:250–257
doi: 10.1111/j.1750-3841.2009.01234.x
Forney CF, Song J, Fan L, Hildebrand PD, Jordan MA (2003) Ozone and 1-methylcyclopropene alter the postharvest quality of broccoli. J Am Soc Hort Sci 128:403–408
doi: 10.21273/JASHS.128.3.0403
Barboni T, Cannac M, Chiaramonti N (2010) Effect of cold storage and ozone treatment on physicochemical parameters, soluble sugars and organic acids in Actinidia deliciosa. Food Chem 121:946–951
doi: 10.1016/j.foodchem.2010.01.024
Minas IS, Karaoglanidis GS, Manganaris GA, Vasilakakis M (2010) Effect of ozone application during cold storage of kiwifruit on the development of stem-end rot caused by Botrytis cinerea. Postharvest Biol Technol 58:203–210
doi: 10.1016/j.postharvbio.2010.07.002
Palou L, Crisosto CH, Smilanick JL, Adaskaveg JE, Zoffoli JP (2002) Effects of continuous 0.3 ppm ozone exposure on decay development and physiological responses of peaches and table grapes in cold storage. Postharvest Biol Technol 24:39–48
doi: 10.1016/S0925-5214(01)00118-1
Carabajal M, Levin L, Albertó E, Lechner B (2012) Effect of co-cultivation of two Pleurotus species on lignocellulolytic enzyme production and mushroom fructification. Int Biodeterior Biodegrad 66(1):71–76
doi: 10.1016/j.ibiod.2011.11.002
Gaitán-Hernández R, Salmones D, Pérez Merlo R, Mata G (2009) Evaluación de la eficiencia biológica de cepas de Pleurotus pulmonarius en paja de cebada fermentada. Rev Mex Micol 30:63–71
Thanomsub B, Anupunpisit V, Chanphetch S, Watcharachaipong T, Poonkhum R, Srisukonth C (2002) Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. J Gen Appl Microbiol 48(4):193–199
doi: 10.2323/jgam.48.193
pubmed: 12469318
Mari M, Bertolini P, Pratella GC (2003) Non-conventional methods for the control of post-harvest pear diseases. J Appl Microbiol 94(5):761–766. https://doi.org/10.1046/j.1365-2672.2003.01920
doi: 10.1046/j.1365-2672.2003.01920
pubmed: 12694440
Spotts RA, Cervantes LA (1992) Effect of ozonated water on postharvest pathogens of pear in laboratory and packinghouse tests. Plant Dis 76:256–259
doi: 10.1094/PD-76-0256
Palou L, Smilanick JL, Crisosto CH, Mansour M (2001) Effect of gaseous ozone exposure on the development of green and blue molds on cold stored citrus fruit. Plant Dis 85(6):632–638
doi: 10.1094/PDIS.2001.85.6.632
pubmed: 30823031
Al Hajjar Nadim FP, Pall E, Pitu F, Suarasan I, Popa C, Fiţ N (2012) In vitro effect of ozonated saline on microorganisms involved in pancreatic and peripancreatic necrosis infection in severe acute pancreatitis. Afr J Microbiol Res 6(3):611–616
Hibben CR, Stotzky G (1969) Effects of ozone on germination of fungus spores. Can J Microbiol 15:1187–1196
doi: 10.1139/m69-215
pubmed: 5392640
Dyas A, Boughton BJ, Das BC (1983) Ozone killing action against bacterial and fungal species: microbiological testing of a domestic ozone generator. J Clin Pathol 36:1102–1104
doi: 10.1136/jcp.36.10.1102
pubmed: 6619309
pmcid: 498483
Restaino L, Frampton EW, Hemphill JB, Palnikar P (1995) Efficacy of ozonated water against various food-related microorganisms. Appl Environ Microbiol 61(9):3471–3475
doi: 10.1128/aem.61.9.3471-3475.1995
pubmed: 7574656
pmcid: 167626