Bio-synthesis and characterization of silver nanoparticles from Trichoderma species against cassava root rot disease.
Antifungal Plant Disease
Cassava Root Rot disease, Lasiodiplodia theobromae, Fusarium solani
FTIR, Plant Biochemical
Green Synthesis Nanoparticle
Silver nanoparticle
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 May 2024
31 May 2024
Historique:
received:
15
05
2023
accepted:
29
04
2024
medline:
1
6
2024
pubmed:
1
6
2024
entrez:
31
5
2024
Statut:
epublish
Résumé
Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This research was conducted to produce and assess silver nanoparticles (AgNPs) synthesized by Trichoderma harzianum for reducing root rot disease. The results revealed that using the supernatants of T. harzianum on a silver nitrate solution changed it to reddish color at 48 h, indicating the formation of AgNPs. Further characterization was identified using dynamic light scattering (DLS) and scanning electron microscope (SEM). DLS supported that the Z-average size is at 39.79 nm and the mean zeta potential is at - 36.5 mV. SEM revealed the formation of monodispersed spherical shape with a diameter between 60-75 nm. The antibacterial action of AgNPs as an antifungal agent was demonstrated by an observed decrease in the size of the fungal colonies using an increasing concentration of AgNPs until the complete inhibition growth of L. theobromae and F. solani at > 58 µg mL
Identifiants
pubmed: 38821999
doi: 10.1038/s41598-024-60903-z
pii: 10.1038/s41598-024-60903-z
doi:
Substances chimiques
Silver
3M4G523W1G
Antifungal Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
12535Informations de copyright
© 2024. The Author(s).
Références
Siddiqi, K. S., Husen, A. & Rao, R. A. K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 16, 14. https://doi.org/10.1186/s12951-018-0334-5 (2018).
doi: 10.1186/s12951-018-0334-5
Siddiqi, K. S. & Husen, A. Fabrication of metal nanoparticles from fungi and metal salts: Scope and application. Nanoscale. Res. Lett. 11, 1–15. https://doi.org/10.1186/s11671-016-1311-2 (2016).
doi: 10.1186/s11671-016-1311-2
Raval, N. et al. In Basic Fundamentals of Drug Delivery (ed. Rakesh, K. T.) 369–400 (Academic Press, 2019).
doi: 10.1016/B978-0-12-817909-3.00010-8
Nobbmann, U. et al. Dynamic light scattering as a relative tool for assessing the molecular integrity and stability of monoclonal antibodies. Biotechnol. Genet. Eng. Rev. 24, 117–128. https://doi.org/10.1080/02648725.2007.10648095 (2007).
doi: 10.1080/02648725.2007.10648095
pubmed: 18059629
Vladár, A. E. & Hodoroaba, V.-D. In Characterization of Nanoparticles by Scanning Electron Microscopy (eds Hodoroaba, V. D. et al.) 7–27 (Elsevier, 2020).
Bootz, A., Vogel, V., Schubert, D. & Kreuter, J. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (Butyl cyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 57, 369–375. https://doi.org/10.1016/s0939-6411(03)00193-0 (2004).
doi: 10.1016/s0939-6411(03)00193-0
pubmed: 15018998
Ying, S. et al. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 26, 102336. https://doi.org/10.1016/j.eti.2022.102336 (2022).
doi: 10.1016/j.eti.2022.102336
Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. & Danquah, M. K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074. https://doi.org/10.3762/bjnano.9.98 (2018).
doi: 10.3762/bjnano.9.98
pubmed: 29719757
pmcid: 5905289
Kumar, A., Nagar, S. & Anand, S. In Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems: Understanding the Interaction of Plant, Microbes and Engineered Nano-particles (ENPS) (eds Singh, P. et al.) 31–47 (Springer International Publishing, 2021).
doi: 10.1007/978-3-030-66956-0_3
Shang, Y. et al. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 24, 2558. https://doi.org/10.3390/molecules24142558 (2019).
doi: 10.3390/molecules24142558
pubmed: 31337070
pmcid: 6680665
Singh, A. & Prasad, S. M. Nanotechnology and its role in agro-ecosystem: A strategic perspective. Int. J. Environ. Sci. Technol. 14, 2277–2300. https://doi.org/10.1007/s13762-016-1062-8 (2017).
doi: 10.1007/s13762-016-1062-8
Khan, I. et al. Nanoparticle’s uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: A review. Environ. Sci. Pollut. Res. Int. 29, 89823–89833. https://doi.org/10.1007/s11356-022-23945-2 (2022).
doi: 10.1007/s11356-022-23945-2
pubmed: 36344893
Saravanan, A. et al. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 264, 128580. https://doi.org/10.1016/j.chemosphere.2020.128580 (2021).
doi: 10.1016/j.chemosphere.2020.128580
pubmed: 33059285
Iravani, S., Korbekandi, H., Mirmohammadi, S. V. & Zolfaghari, B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 9, 385–406 (2014).
pubmed: 26339255
pmcid: 4326978
Arzu, Ö., Dilek, A. & Muhsin, K. In Environmental Health Risk, Ch. 1 (eds Larramendy, L. M. & Soloneski, S.) (IntechOpen, 2016).
Fariq, A., Khan, T. & Yasmin, A. Microbial synthesis of nanoparticles and their potential applications in biomedicine. J. Appl. Biomed. 15, 241–248 (2017).
doi: 10.1016/j.jab.2017.03.004
Rozhin, A. et al. Biogenic silver nanoparticles: Synthesis and application as antibacterial and antifungal agents. Micromachines 12, 1480. https://doi.org/10.3390/mi12121480 (2021).
doi: 10.3390/mi12121480
pubmed: 34945330
pmcid: 8708042
Guilger, M. et al. Biogenic silver nanoparticles based on Trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Sci. Rep. 7, 44421. https://doi.org/10.1038/srep44421 (2017).
doi: 10.1038/srep44421
pubmed: 28300141
pmcid: 5353535
Dorcheh, S. K. & Vahabi, K. In Fungal Metabolites (eds Mérillon, J. M. & Ramawat, K. G.) 395–414 (Springer International Publishing, 2017).
doi: 10.1007/978-3-319-25001-4_8
Contreras-Cornejo, H. A., Macías-Rodríguez, L., del Val, E. & Larsen, J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiol. Ecol. 92, fiw036. https://doi.org/10.1093/femsec/fiw036 (2016).
doi: 10.1093/femsec/fiw036
pubmed: 26906097
Saengchan, C., Phansak, P., Le Thanh, T., Papathoti, N. K. & Buensanteai, N. Efficacy of salicylic acid and a Bacillus bioproduct in enhancing growth of cassava and controlling root rot disease. J. Plant Prot. Res. 61, 302–310. https://doi.org/10.24425/jppr.2021.137952 (2021).
doi: 10.24425/jppr.2021.137952
Kim, S. W. et al. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40, 53–58. https://doi.org/10.5941/MYCO.2012.40.1.053 (2012).
doi: 10.5941/MYCO.2012.40.1.053
pubmed: 22783135
pmcid: 3385153
Oliveira, D. G. P., Pauli, G., Mascarin, G. M. & Delalibera, I. A protocol for determination of conidial viability of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae from commercial products. J. Microbiol. Methods 119, 44–52 (2015).
doi: 10.1016/j.mimet.2015.09.021
pubmed: 26432104
Alsamhary, K. I. Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and their antibacterial activity. Saudi J. Biol. Sci. 27, 2185–2191. https://doi.org/10.1016/j.sjbs.2020.04.026 (2020).
doi: 10.1016/j.sjbs.2020.04.026
pubmed: 32714045
pmcid: 7376129
Madakka, M., Jayaraju, N. & Rajesh, N. Mycosynthesis of silver nanoparticles and their characterization. MethodsX 5, 20–29 (2018).
doi: 10.1016/j.mex.2017.12.003
pubmed: 30619720
pmcid: 6314273
Carvalho, P. M., Felício, M. R., Santos, N. C., Gonçalves, S. & Domingues, M. M. Application of light scattering techniques to nanoparticle characterization and development. Front. Chem. 6, 237. https://doi.org/10.3389/fchem.2018.00237 (2018).
doi: 10.3389/fchem.2018.00237
pubmed: 29988578
pmcid: 6026678
Delvallée, A., Feltin, N., Ducourtieux, S., Trabelsi, M. & Hochepied, J. F. Direct comparison of AFM and SEM measurements on the same set of nanoparticles. Meas. Sci. Technol. 26, 085601. https://doi.org/10.1088/0957-0233/26/8/085601 (2015).
doi: 10.1088/0957-0233/26/8/085601
Balouiri, M., Sadiki, M. & Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity. J. Pharm. Anal. 6, 71–79. https://doi.org/10.1016/j.jpha.2015.11.005 (2016).
doi: 10.1016/j.jpha.2015.11.005
pubmed: 29403965
Makovitzki, A., Viterbo, A., Brotman, Y., Chet, I. & Shai, Y. Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides. Appl. Environ. Microbiol. 73, 6629–6636. https://doi.org/10.1128/AEM.01334-07 (2007).
doi: 10.1128/AEM.01334-07
pubmed: 17720828
pmcid: 2075073
John, H. R. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi, approved standard. Second edition. M38–A2. Clin. Lab. Stand. Inst. 28, 1–35 (2008).
Kogkaki, E. et al. Differentiation and identification of grape-associated black aspergilli using Fourier transform infrared (FT-IR) spectroscopic analysis of mycelia. Int. J. Food Microbiol. 259, 22–28. https://doi.org/10.1016/j.ijfoodmicro.2017.07.020 (2017).
doi: 10.1016/j.ijfoodmicro.2017.07.020
pubmed: 28779624
Onyeka, T. J., Dixon, A. G. & Ekpo, E. J. Assessment of laboratory methods for evaluating cassava genotypes for resistance to root rot disease. Mycopathologia 159, 461–467. https://doi.org/10.1007/s11046-004-6156-z (2005).
doi: 10.1007/s11046-004-6156-z
pubmed: 15883733
Boas, S., Hohenfeld, C., Oliveira, S., Santos, V. & Oliveira, E. Sources of resistance to cassava root rot caused by Fusarium spp.: A genotypic approach. Euphytica https://doi.org/10.1007/s10681-016-1676-4 (2016).
doi: 10.1007/s10681-016-1676-4
Mahmudin, L., Suharyadi, E., Utomo, A. & Abraha, K. Optical properties of silver nanoparticles for surface plasmon resonance (SPR)-based biosensor applications. J. Mod. Phys. 06, 1071–1076. https://doi.org/10.4236/jmp.2015.68111 (2015).
doi: 10.4236/jmp.2015.68111
Konappa, N. et al. Ameliorated antibacterial and antioxidant properties by Trichoderma harzianum mediated green synthesis of silver nanoparticles. Biomolecules 11, 535. https://doi.org/10.3390/biom11040535 (2021).
doi: 10.3390/biom11040535
pubmed: 33916555
pmcid: 8066458
McNamara, K., Tofail, S. A. M., Thorat, N. D., Bauer, J. & Mulvihill, J. J. E. (2020) In: Florent, C. (eds) Nanoalloys, 2nd edn. Elsevier, Paris, pp 381–432
Shnoudeh, A. J. et al. Synthesis, characterization, and applications of metal nanoparticles. In Biomaterials and Biotechnology (ed. Tekade, R. K.) 527–612 (Academic Press, 2019).
Clogston, J. & Patri, A. Zeta potential measurement. Methods Mol. Biol. 697, 63–70. https://doi.org/10.1007/978-1-60327-198-1_6 (2011).
doi: 10.1007/978-1-60327-198-1_6
pubmed: 21116954
Van Aarle, I. M. & Olsson, P. A. Fungal lipid accumulation and development of mycelial structures by two arbuscular mycorrhizal fungi. Appl. Environ. Microbiol. 69, 6762–6767. https://doi.org/10.1128/AEM.69.11.6762-6767.2003 (2003).
doi: 10.1128/AEM.69.11.6762-6767.2003
pubmed: 14602638
pmcid: 262256
Rella, A., Farnoud, A. M. & Del Poeta, M. Plasma membrane lipids and their role in fungal virulence. Prog. Lipid Res. 61, 63–72. https://doi.org/10.1016/j.plipres.2015.11.003 (2016).
doi: 10.1016/j.plipres.2015.11.003
pubmed: 26703191
Salvatore, M. M., Alves, A. & Andolfi, A. Secondary metabolites of Lasiodiplodia theobromae: Distribution, chemical diversity, bioactivity, and implications of their occurrence. Toxins 12, 457. https://doi.org/10.3390/toxins12070457 (2020).
doi: 10.3390/toxins12070457
pubmed: 32709023
pmcid: 7405015
Walley, J. W., Kliebenstein, D. J., Bostock, R. M. & Dehesh, K. Fatty acids and early detection of pathogens. Curr. Opin. Plant. Biol. 16, 520–526. https://doi.org/10.1016/j.pbi.2013.06.011 (2013).
doi: 10.1016/j.pbi.2013.06.011
pubmed: 23845737
Shapaval, V., Afseth, N. K., Vogt, G. & Kohler, A. Fourier transform infrared spectroscopy for the prediction of fatty acid profiles in mucor fungi grown in media with different carbon sources. Microb. Cell Fact. 13, 86. https://doi.org/10.1186/1475-2859-13-86 (2014).
doi: 10.1186/1475-2859-13-86
pubmed: 25208488
pmcid: 4283129
Krimm, S. & Bandekar, J. In Advances in Protein Chemistry (eds Anfinsen, C. B. et al.) 181–364 (Academic Press, 1986).
Bandekar, J. Amide modes and protein conformation. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1120, 123–143. https://doi.org/10.1016/0167-4838(92)90261-B (1992).
doi: 10.1016/0167-4838(92)90261-B
Feldman, D., Yarden, O. & Hadar, Y. Seeking the roles for fungal small-secreted proteins in affecting saprophytic lifestyles. Front. Microbiol. 11, 455–455. https://doi.org/10.3389/fmicb.2020.00455 (2020).
doi: 10.3389/fmicb.2020.00455
pubmed: 32265881
pmcid: 7105643
Liu, Y., Bastiaan-Net, S. & Wichers, H. J. Current understanding of the structure and function of fungal immunomodulatory proteins. Front. Nutr. https://doi.org/10.3389/fnut.2020.00132 (2020).
doi: 10.3389/fnut.2020.00132
pubmed: 33553229
pmcid: 7770174
Kämper, J. et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444, 97–101. https://doi.org/10.1038/nature05248 (2006).
doi: 10.1038/nature05248
pubmed: 17080091
Skoneczny, M. & Skoneczna, A. In Stress Response Mechanisms in Fungi: Theoretical and Practical Aspects (ed. Skoneczny, M.) 35–85 (Springer International Publishing, 2018).
doi: 10.1007/978-3-030-00683-9_2
Künzler, M. How fungi defend themselves against microbial competitors and animal predators. PLoS Pathog. 14, e1007184. https://doi.org/10.1371/journal.ppat.1007184 (2018).
doi: 10.1371/journal.ppat.1007184
pubmed: 30188951
pmcid: 6126850
Mihoubi, W., Sahli, E., Gargouri, A. & Amiel, C. FTIR spectroscopy of whole cells for the monitoring of yeast apoptosis mediated by p53 over-expression and its suppression by Nigella sativa extracts. PLoS One 12, e0180680. https://doi.org/10.1371/journal.pone.0180680 (2017).
doi: 10.1371/journal.pone.0180680
pubmed: 28704406
pmcid: 5507515
Peyraud, R., Mbengue, M., Barbacci, A. & Raffaele, S. Intercellular cooperation in a fungal plant pathogen facilitates host colonization. Proc. Natl. Acad. Sci. USA 116(8), 3193–3201. https://doi.org/10.1073/pnas.1811267116 (2019).
doi: 10.1073/pnas.1811267116
pubmed: 30728304
pmcid: 6386666
Brown, A. J. P., Cowen, L. E., di Pietro, A. & Quinn, J. The Fungal Kingdom 463–485 (ASM Press, 2017).
doi: 10.1128/9781555819583.ch21
Walter, S., Nicholson, P. & Doohan, F. M. Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol. 185(1), 54–66. https://doi.org/10.1111/j.1469-8137.2009.03041.x (2010).
doi: 10.1111/j.1469-8137.2009.03041.x
pubmed: 19807873