Curved carbon-plated shoe may further reduce forefoot loads compared to flat plate during running.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
08 Jun 2024
08 Jun 2024
Historique:
received:
15
01
2024
accepted:
05
06
2024
medline:
9
6
2024
pubmed:
9
6
2024
entrez:
8
6
2024
Statut:
epublish
Résumé
Using a curved carbon-fiber plate (CFP) in running shoes may offer notable performance benefit over flat plates, yet there is a lack of research exploring the influence of CFP geometry on internal foot loading during running. The objective of this study was to investigate the effects of CFP mechanical characteristics on forefoot biomechanics in terms of plantar pressure, bone stress distribution, and contact force transmission during a simulated impact peak moment in forefoot strike running. We employed a finite element model of the foot-shoe system, wherein various CFP configurations, including three stiffnesses (stiff, stiffer, and stiffest) and two shapes (flat plate (FCFP) and curved plate (CCFP)), were integrated into the shoe sole. Comparing the shoes with no CFP (NCFP) to those with CFP, we consistently observed a reduction in peak forefoot plantar pressure with increasing CFP stiffness. This decrease in pressure was even more notable in a CCFP demonstrating a further reduction in peak pressure ranging from 5.51 to 12.62%, compared to FCFP models. Both FCFP and CCFP designs had a negligible impact on reducing the maximum stress experienced by the 2nd and 3rd metatarsals. However, they greatly influenced the stress distribution in other metatarsal bones. These CFP designs seem to optimize the load transfer pathway, enabling a more uniform force transmission by mainly reducing contact force on the medial columns (the first three rays, measuring 0.333 times body weight for FCFP and 0.335 for CCFP in stiffest condition, compared to 0.373 in NCFP). We concluded that employing a curved CFP in running shoes could be more beneficial from an injury prevention perspective by inducing less peak pressure under the metatarsal heads while not worsening their stress state compared to flat plates.
Identifiants
pubmed: 38851842
doi: 10.1038/s41598-024-64177-3
pii: 10.1038/s41598-024-64177-3
doi:
Substances chimiques
Carbon Fiber
0
Carbon
7440-44-0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
13215Subventions
Organisme : Research Academy of Medicine Combining Sports, Ningbo
ID : No.2023001
Organisme : Research Grants Council
ID : RGC #15211322
Organisme : Shenzhen Research Fund
ID : JCYJ-20230807-14041-4029
Organisme : Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars
ID : LR22A020002
Organisme : Zhejiang Provincial Natural Science Foundation
ID : LTGY23H040003
Organisme : Zhejiang Rehabilitation Medical Association Scientific Research Special Fund
ID : ZKKY2023001
Organisme : the Project of NINGBO Leading Medical &Health Discipline
ID : No.2022-F15
Organisme : the Project of NINGBO Leading Medical &Health Discipline
ID : No.2022-F22
Organisme : Public Welfare Science & Technology Project of Ningbo, China
ID : 2021S134
Organisme : Zhejiang Provincial Key Research and Development Program of China
ID : 2023C03197
Organisme : Ningbo Natural Science Foundation
ID : 2022J065
Organisme : Ningbo Natural Science Foundation
ID : 20221JCGY010607
Informations de copyright
© 2024. The Author(s).
Références
Nigg, B. M. et al. Highlighting the present state of biomechanics in shoe research (2000–2023). Footwear Sci. 1, 1–11 (2023).
Hunter, I. et al. Running economy, mechanics, and marathon racing shoes. J. Sports Sci. 37, 2367–2373 (2019).
doi: 10.1080/02640414.2019.1633837
pubmed: 31223054
Barnes, K. R. & Kilding, A. E. A randomized crossover study investigating the running economy of highly-trained male and female distance runners in marathon racing shoes versus track spikes. Sports Med. 49, 331–342 (2019).
doi: 10.1007/s40279-018-1012-3
pubmed: 30374945
Cigoja, S. et al. The effects of increased midsole bending stiffness of sport shoes on muscle-tendon unit shortening and shortening velocity: A randomised crossover trial in recreational male runners. Sports Med. 6, 1–11 (2020).
Cigoja, S. et al. Does increased midsole bending stiffness of sport shoes redistribute lower limb joint work during running? J. Sci. Med. Sport 22, 1272–1277 (2019).
doi: 10.1016/j.jsams.2019.06.015
pubmed: 31272917
Willwacher, S., König, M., Potthast, W. & Brüggemann, G. Does specific footwear facilitate energy storage and return at the metatarsophalangeal joint in running? J. Appl. Biomech. 29, 583–592 (2013).
doi: 10.1123/jab.29.5.583
pubmed: 24203172
Rodrigo-Carranza, V., González-Mohíno, F., Santos-Concejero, J. & González-Ravé, J. M. The effects of footwear midsole longitudinal bending stiffness on running economy and ground contact biomechanics: A systematic review and meta-analysis. Eur. J. Sport Sci. 22, 1508–1521 (2022).
doi: 10.1080/17461391.2021.1955014
pubmed: 34369282
Edwards, W. B. Modeling overuse injuries in sport as a mechanical fatigue phenomenon. Exerc. Sport Sci. Rev. 46, 224–231 (2018).
doi: 10.1249/JES.0000000000000163
pubmed: 30001271
Li, J. et al. Effect of long-distance running on inter-segment foot kinematics and ground reaction forces: A preliminary study. Front. Bioeng. Biotechnol. 10, 833774 (2022).
doi: 10.3389/fbioe.2022.833774
pubmed: 35309978
pmcid: 8931215
Mey, Q., Gu, Y., Sun, D. & Fernandez, J. How foot morphology changes influence shoe comfort and plantar pressure before and after long distance running? Acta Bioeng. Biomech. 20, 179–186 (2018).
Song, Y. et al. Influence of changes in foot morphology and temperature on bruised toenail injury risk during running. Sci. Rep. 14, 1826 (2024).
doi: 10.1038/s41598-024-51826-w
pubmed: 38246957
pmcid: 10800341
Stefanyshyn, D. J. & Wannop, J. W. The influence of forefoot bending stiffness of footwear on athletic injury and performance. Footwear Sci. 8, 51–63 (2016).
doi: 10.1080/19424280.2016.1144652
Flores, N., Rao, G., Berton, E. & Delattre, N. The stiff plate location into the shoe influences the running biomechanics. Sport Biomech. 20, 815–830 (2019).
doi: 10.1080/14763141.2019.1607541
Song, Y. et al. The influence of running shoe with different carbon-fiber plate designs on internal foot mechanics: A pilot computational analysis. J. Biomech. 153, 111597 (2023).
doi: 10.1016/j.jbiomech.2023.111597
pubmed: 37126883
Farina, E. M., Haigh, D. & Luo, G. Creating footwear for performance running. Science 10, 179–187 (2019).
Song, Y., Shao, E., Bíró, I., Baker, J. S. & Gu, Y. Finite element modelling for footwear design and evaluation: A systematic scoping review. Heliyon 8, e10940 (2022).
doi: 10.1016/j.heliyon.2022.e10940
pubmed: 36247144
pmcid: 9563159
Song, Y. et al. Development and validation of a subject-specific coupled model for foot and sports shoe complex: A pilot computational study. Bioengineering 9, 553 (2022).
doi: 10.3390/bioengineering9100553
pubmed: 36290521
pmcid: 9598393
Peng, Y. et al. Different design feature combinations of flatfoot orthosis on plantar fascia strain and plantar pressure: A muscle-driven finite element analysis with Taguchi method. Front. Bioeng. Biotechnol. 10, 853085 (2022).
doi: 10.3389/fbioe.2022.853085
pubmed: 35360398
pmcid: 8960448
Fu, F. et al. Effect of the construction of carbon fiber plate insert to midsole on running performance. Materials 14, 5156 (2021).
doi: 10.3390/ma14185156
pubmed: 34576379
pmcid: 8467156
Yu, L. et al. Principal component analysis of the running ground reaction forces with different speeds. Front. Bioeng. Biotechnol. 9, 629809 (2021).
doi: 10.3389/fbioe.2021.629809
pubmed: 33842444
pmcid: 8026898
Boyer, E. R., Rooney, B. D. & Derrick, T. R. Rearfoot and midfoot or forefoot impacts in habitually shod runners. Med. Sci. Sport Exerc. 46, 1384–1391 (2014).
doi: 10.1249/MSS.0000000000000234
Wang, Y., Li, Z., Wong, D.W.-C. & Zhang, M. Effects of ankle arthrodesis on biomechanical performance of the entire foot. PLoS ONE 10, e0134340 (2015).
doi: 10.1371/journal.pone.0134340
pubmed: 26222188
pmcid: 4519327
Kim, H. K., Mirjalili, S. A. & Fernandez, J. Gait kinetics, kinematics, spatiotemporal and foot plantar pressure alteration in response to long-distance running: Systematic review. Hum. Mov. Sci. 57, 342–356 (2018).
doi: 10.1016/j.humov.2017.09.012
pubmed: 28947176
Willems, T. M., De Ridder, R. & Roosen, P. The effect of a long-distance run on plantar pressure distribution during running. Gait Posture 35, 405–409 (2012).
doi: 10.1016/j.gaitpost.2011.10.362
pubmed: 22153665
Nagel, A., Fernholz, F., Kibele, C. & Rosenbaum, D. Long distance running increases plantar pressures beneath the metatarsal heads: A barefoot walking investigation of 200 marathon runners. Gait Posture 27, 152–155 (2008).
doi: 10.1016/j.gaitpost.2006.12.012
pubmed: 17276688
Ellison, M. A., Akrami, M., Fulford, J., Javadi, A. A. & Rice, H. M. Three dimensional finite element modelling of metatarsal stresses during running. J. Med. Eng. Technol. 44, 368–377 (2020).
doi: 10.1080/03091902.2020.1799092
pubmed: 32762585
Ellison, M. A., Kenny, M., Fulford, J., Javadi, A. & Rice, H. M. Incorporating subject-specific geometry to compare metatarsal stress during running with different foot strike patterns. J. Biomech. 105, 109792 (2020).
doi: 10.1016/j.jbiomech.2020.109792
pubmed: 32327192
Chen, W.-M., Lee, S.-J. & Lee, P. V. S. Plantar pressure relief under the metatarsal heads: Therapeutic insole design using three-dimensional finite element model of the foot. J. Biomech. 48, 659–665 (2015).
doi: 10.1016/j.jbiomech.2014.12.043
pubmed: 25620685
Ellison, M. A., Fulford, J., Javadi, A. & Rice, H. M. Do non-rearfoot runners experience greater second metatarsal stresses than rearfoot runners? J. Biomech. 126, 110647 (2021).
doi: 10.1016/j.jbiomech.2021.110647
pubmed: 34343863
Roy, J. P. R. & Stefanyshyn, D. J. Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG. Med. Sci. Sports Exerc. 38, 562–569 (2006).
doi: 10.1249/01.mss.0000193562.22001.e8
pubmed: 16540846
Flores, N., Delattre, N., Berton, E. & Rao, G. Does an increase in energy return and/or longitudinal bending stiffness shoe features reduce the energetic cost of running? Eur. J. Appl. Physiol. 119, 429–439 (2019).
doi: 10.1007/s00421-018-4038-1
pubmed: 30470873
Frederick, E. C. Let’s just call it advanced footwear technology (AFT). Footwear Sci. 14, 131 (2022).
doi: 10.1080/19424280.2022.2127526