Playing Hide-and-Seek with Tyrosine Kinase Inhibitors: Can We Overcome Administration Challenges?
PBPK
TKIs
acid-reducing agents
dosing frequency
food effect
pill burden
Journal
The AAPS journal
ISSN: 1550-7416
Titre abrégé: AAPS J
Pays: United States
ID NLM: 101223209
Informations de publication
Date de publication:
11 Jun 2024
11 Jun 2024
Historique:
received:
06
04
2024
accepted:
29
05
2024
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
11
6
2024
Statut:
epublish
Résumé
Tyrosine kinase inhibitors (TKIs) have demonstrated significant efficacy against various types of cancers through molecular targeting mechanisms. Over the past 22 years, more than 100 TKIs have been approved for the treatment of various types of cancer indicating the significant progress achieved in this research area. Despite having significant efficacy and ability to target multiple pathways, TKIs administration is associated with challenges. There are reported inconsistencies between observed food effect and labeling administration, challenges of concomitant administration with acid-reducing agents (ARA), pill burden and dosing frequency. In this context, the objective of present review is to visit administration challenges of TKIs and effective ways to tackle them. We have gathered data of 94 TKIs approved in between 2000 and 2022 with respect to food effect, ARA impact, administration schemes (food and PPI restrictions), number of pills per day and administration frequency. Further, trend analysis has been performed to identify inconsistencies in the labeling with respect to observed food effect, molecules exhibiting ARA impact, in order to identify solutions to remove these restrictions through novel formulation approaches. Additionally, opportunities to reduce number of pills per day and dosing frequency for better patient compliance were suggested using innovative formulation interventions. Finally, utility of physiologically based pharmacokinetic modeling (PBPK) for rationale formulation development was discussed with literature reported examples. Overall, this review can act as a ready-to-use-guide for the formulation, biopharmaceutics scientists and medical oncologists to identify opportunities for innovation for TKIs.
Identifiants
pubmed: 38862853
doi: 10.1208/s12248-024-00939-1
pii: 10.1208/s12248-024-00939-1
doi:
Substances chimiques
Protein Kinase Inhibitors
0
Antineoplastic Agents
0
Protein-Tyrosine Kinases
EC 2.7.10.1
Tyrosine Kinase Inhibitors
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
66Informations de copyright
© 2024. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.
Références
Huang L, Jiang S, Shi Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2022). J Hematol Oncol. 2022;13:1–23. https://doi.org/10.1186/s13045-020-00977-0 .
doi: 10.1186/s13045-020-00977-0
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. Ca Cancer J Clin. 2023;73(1):17–48. https://doi.org/10.3322/caac.21442 .
doi: 10.3322/caac.21442
pubmed: 36633525
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660 .
doi: 10.3322/caac.21660
Terada T, Noda S, Inui KI. Management of dose variability and side effects for individualized cancer pharmacotherapy with tyrosine kinase inhibitors. Pharmacol Ther. 2015;152:125–34. https://doi.org/10.1016/j.pharmthera.2015.05.009 .
doi: 10.1016/j.pharmthera.2015.05.009
pubmed: 25976912
Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene. 2000;19(49):5548–57. https://doi.org/10.1038/sj.onc.1203957 .
doi: 10.1038/sj.onc.1203957
pubmed: 11114734
Kang SP, Ratain MJ. Inconsistent labeling of food effect for oral agents across therapeutic areas: differences between oncology and non-oncology products. Clin Cancer Res. 2010;16(17):4446–51. https://doi.org/10.1158/1078-0432.CCR-10-0663 .
doi: 10.1158/1078-0432.CCR-10-0663
pubmed: 20736327
pmcid: 2932769
Herbrink M, Nuijen B, Schellens JH, Beijnen JH. Variability in bioavailability of small molecular tyrosine kinase inhibitors. Cancer Treat Rev. 2015;41(5):412–22. https://doi.org/10.1016/j.ctrv.2015.03.005 .
doi: 10.1016/j.ctrv.2015.03.005
pubmed: 25818541
Veerman GDM, Hussaarts KGAM, Jansman FGA, Koolen SWL, van Leeuwen RWF, Mathijssen RHJ. Clinical implications of food-drug interactions with small-molecule kinase inhibitors. Lancet Oncol. 2020;21(5):e265–79. https://doi.org/10.1016/S1470-2045(20)30069-3 .
doi: 10.1016/S1470-2045(20)30069-3
pubmed: 32359502
Hussaarts KG, Veerman GM, Jansman FG, van Gelder T, Mathijssen RH, van Leeuwen RW. Clinically relevant drug interactions with multikinase inhibitors: a review. Ther Adv Med Oncol. 2019;11:1758835918818347. https://doi.org/10.1177/1758835918818347 .
doi: 10.1177/1758835918818347
pubmed: 30643582
pmcid: 6322107
Sharma M, Holmes HM, Mehta HB, Chen H, Aparasu RR, Shih YC, et al. The concomitant use of tyrosine kinase inhibitors and proton pump inhibitors: prevalence, predictors, and impact on survival and discontinuation of therapy in older adults with cancer. Cancer. 2019;125(7):1155–62. https://doi.org/10.1002/cncr.31917 .
doi: 10.1002/cncr.31917
pubmed: 30605231
Uchiyama AA, Silva PA, Lopes MS, Yen CT, Ricardo ED, Mutão T, et al. Proton pump inhibitors and oncologic treatment efficacy: a practical review of the literature for oncologists. Curr Oncol. 2021;28(1):783–99. https://doi.org/10.3390/curroncol28010076 .
doi: 10.3390/curroncol28010076
pubmed: 33546228
pmcid: 7985775
Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. The Biopharmaceutics classification system: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur J Pharm Sci. 2014;57:152–63. https://doi.org/10.1016/j.ejps.2014.01.009 .
doi: 10.1016/j.ejps.2014.01.009
pubmed: 24486482
pmcid: 4112588
Tsume Y, Takeuchi S, Matsui K, Amidon GE, Amidon GL. In vitro dissolution methodology, mini-gastrointestinal Simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib. Eur J Pharm Sci. 2015;76:203–12. https://doi.org/10.1016/j.ejps.2015.05.013 .
doi: 10.1016/j.ejps.2015.05.013
pubmed: 25978875
Satapathy S, Patro CS. Solid lipid nanoparticles for efficient oral delivery of tyrosine kinase inhibitors: a nano targeted cancer drug delivery. Adv Pharm Bull. 2022;12(2):298. https://doi.org/10.34172/apb.2022.041 .
doi: 10.34172/apb.2022.041
pubmed: 35620346
Vinarov Z, Abdallah M, Agundez JA, Allegaert K, Basit AW, Braeckmans M, et al. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: an UNGAP review. Eur J Pharm Sci. 2021;162:105812. https://doi.org/10.1016/j.ejps.2021.105812 .
doi: 10.1016/j.ejps.2021.105812
pubmed: 33753215
Gu CH, Li H, Levons J, Lentz K, Gandhi RB, Raghavan K, Smith RL. Predicting effect of food on extent of drug absorption based on physicochemical properties. Pharm Res. 2007;24:1118–30. https://doi.org/10.1007/s11095-007-9236-1 .
doi: 10.1007/s11095-007-9236-1
pubmed: 17385020
Cvijić S, Parojčić J, Langguth P. Viscosity-mediated negative food effect on oral absorption of poorly-permeable drugs with an absorption window in the proximal intestine: in vitro experimental simulation and computational verification. Eur J Pharm Sci. 2014;61:40–53. https://doi.org/10.1016/j.ejps.2014.04.008 .
doi: 10.1016/j.ejps.2014.04.008
pubmed: 24751672
Zahir H, Yin O, Hsu C, Wagner AJ, Jiang J, Wang X, et al. Dosing recommendation based on the effects of different meal types on Pexidartinib Pharmacokinetics in healthy subjects: implementation of model-informed Drug Development Strategy. Clin Pharmacol Drug Dev. 2023;12(5):475–83. https://doi.org/10.1002/cpdd.1240 .
doi: 10.1002/cpdd.1240
pubmed: 36942508
Narasimhan NI, Dorer DJ, Niland K, Haluska F, Sonnichsen D. Effects of food on the pharmacokinetics of ponatinib in healthy subjects. J Clin Pharm Ther. 2013;38(6):440–4. https://doi.org/10.1111/jcpt.12082 .
doi: 10.1111/jcpt.12082
pubmed: 23888935
Farha M, Masson E, Tomkinson H, Mugundu G. Food effect study design with oral drugs: lessons learned from recently approved drugs in oncology. J Clin Pharmacol. 2019;59(4):463–71. https://doi.org/10.1002/jcph.1351 .
doi: 10.1002/jcph.1351
pubmed: 30536979
Ratain MJ, Cohen EE. The value meal: how to save $1,700 per month or more on lapatinib. J Clin Oncol. 2007;25(23):3397–8. https://doi.org/10.1200/jco.2007.12.0758 .
doi: 10.1200/jco.2007.12.0758
pubmed: 17635950
Singh BN, Malhotra BK. Effects of food on the clinical pharmacokinetics of anticancer agents: underlying mechanisms and implications for oral chemotherapy. Clin Pharmacokinet. 2004;43:1127–56. https://doi.org/10.2165/00003088-200443150-00005 .
doi: 10.2165/00003088-200443150-00005
pubmed: 15568891
Valle M, Di Salle E, Jannuzzo MG, Poggesi I, Rocchetti M, Spinelli R, et al. A predictive model for exemestane pharmacokinetics/pharmacodynamics incorporating the effect of food and formulation. Br J Clin Pharmacol. 2005;59(3):355–64. https://doi.org/10.1111/j.1365-2125.2005.02335.x .
doi: 10.1111/j.1365-2125.2005.02335.x
pubmed: 15752382
pmcid: 1884784
Newman MJ, Dixon R, Toyonaga B. OC144-093, a Novel P glycoprotein Inhibitor for the Enhancement of Anti‐Epileptic Therapy. In: Mechanisms of Drug Resistance in Epilepsy: Novartis Foundation Symposium 243 2002 Mar 25 (Vol. 243, pp. 213–230). Chichester: Wiley. https://doi.org/10.1002/0470846356.ch16 .
Chi KN, Spratlin J, Kollmannsberger C, North S, Pankras C, Gonzalez M, Bernard A, Stieltjes H, Peng L, Jiao J, Acharya M, Kheoh T, Griffin TW, Yu MK, Chien C, Tran NP. Food effects on abiraterone pharmacokinetics in healthy subjects and patients with metastatic castration-resistant prostate cancer. J Clin Pharmacol. 2015;55(12):1406–14. https://doi.org/10.1002/jcph.564 .
doi: 10.1002/jcph.564
pubmed: 26096139
Chien C, Smith M, De Porre P. Effect of food on abiraterone pharmacokinetics: a review. Int J Pharmacokinet. 2017;2(3):183–93. https://doi.org/10.4155/ipk-2016-0026 .
doi: 10.4155/ipk-2016-0026
Jain RK, Brar SS, Lesko LJ. Food and oral antineoplastics: more than meets the eye. Clin Cancer Res. 2010;16(17):4305–7. https://doi.org/10.1158/1078-0432.CCR-10-1857 .
doi: 10.1158/1078-0432.CCR-10-1857
pubmed: 20736331
Joensuu H, Dimitrijevic S. Tyrosine kinase inhibitor imatinib (STIS71) as an anticancer agent for solid tumours. Ann Med. 2001;33(7):451–5. https://doi.org/10.3109/07853890109002093 .
doi: 10.3109/07853890109002093
pubmed: 11680792
Faucette S, Wagh S, Trivedi A, Venkatakrishnan K, Gupta N. Reverse translation of US Food and Drug Administration Reviews of Oncology New Molecular entities approved in 2011–2017: lessons learned for Anticancer Drug Development. Clin Transl Sci. 2018;11(2):123–46. https://doi.org/10.1111/cts.12527 .
doi: 10.1111/cts.12527
pubmed: 29266809
Yu G, Li GF, Wang DX, Wang J, Zhou HH. Fasting conditions in clinical oncology trials and drug labelling. Lancet Oncol. 2017;18(9):E506. https://doi.org/10.1016/S1470-2045(17)30585-5 .
doi: 10.1016/S1470-2045(17)30585-5
pubmed: 28884694
Yu G, Wu DN, Yu Y, Li GF, Zhou HH. Impact of dosage timing on the bioavailability of oral anticancer medications: is pre-prandial dosing equivalent to post-prandial dosing. J Oncol Pharm Pract. 2019;25(2):404–8. https://doi.org/10.1177/1078155217752535 .
doi: 10.1177/1078155217752535
pubmed: 29343152
USFDA Drug Label. Regorafenib. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203085lbl.pdf . Accessed 29 Apr 2024.
Szmulewitz RZ, Ratain MJ. Playing Russian roulette with tyrosine kinase inhibitors. Clin Pharmacol Ther. 2013;93(3):242–4. https://doi.org/10.1038/clpt.2012.245 .
doi: 10.1038/clpt.2012.245
pubmed: 23340477
Tvingsholm SA, Dehlendorff C, Østerlind K, Friis S, Jäättelä M. Proton pump inhibitor use and cancer mortality. Int J Cancer. 2018;143(6):1315–26. https://doi.org/10.1002/ijc.31529 .
doi: 10.1002/ijc.31529
pubmed: 29658114
pmcid: 7611279
Numico G, Fusco V, Franco P, Roila F. Proton pump inhibitors in cancer patients: how useful they are? A review of the most common indications for their use. Crit Rev Oncol Hematol. 2017;111:144–51. https://doi.org/10.1016/j.critrevonc.2017.01.014 .
doi: 10.1016/j.critrevonc.2017.01.014
pubmed: 28259289
van Leeuwen RW, Jansman FG, Hunfeld NG, Peric R, Reyners AK, Imholz AL, et al. Tyrosine kinase inhibitors and proton pump inhibitors: an evaluation of treatment options. Clin Pharmacokinet. 2017;56:683–8. https://doi.org/10.1007/s40262-016-0503-3 .
doi: 10.1007/s40262-016-0503-3
pubmed: 28101705
pmcid: 5488129
Bridoux M, Turpin A. Proton pump inhibitors and cancer: current state of play. Front Pharmacol. 2022;13:798272. https://doi.org/10.3389/fphar.2022.798272 .
doi: 10.3389/fphar.2022.798272
pubmed: 35359844
pmcid: 8963837
EMA. Guideline on the investigation of drug interactions. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf . Accessed 13 Mar 2024.
USFDA, Evaluation of gastric pH-dependent drug interactions with acid-reducing agents. Study design, data analysis, and clinical implications guidance for industry. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/evaluation-gastric-ph-dependent-drug-interactions-acid-reducing-agents-study-design-data-analysis . Accessed 13 Mar 2024.
EMA. Palbociclib hard capsule 75 mg, 100 mg and 125 mg and film-coated tablet 75 mg, 100 mg and 125 mg product specific bioequivalence guidance. https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_212436.pdf . Accessed 13 Mar 2024.
Raoul JL, Guérin-Charbonnel C, Edeline J, Simmet V, Gilabert M, Frenel JS. Prevalence of proton pump inhibitor use among patients with cancer. JAMA Netw Open. 2021;4(6):e2113739. https://doi.org/10.1001/jamanetworkopen.2021 .
doi: 10.1001/jamanetworkopen.2021
pubmed: 34132796
pmcid: 8209575
Lee JE, Kwon SH, Kwon S, Jung HI, Nam JH, Lee EK. Concomitant use of proton pump inhibitors and palbociclib among patients with breast cancer. JAMA Netw Open. 2023;6(7):e2324852. https://doi.org/10.1001/jamanetworkopen.2023.24852 .
doi: 10.1001/jamanetworkopen.2023.24852
pubmed: 37477917
pmcid: 10362477
Smelick GS, Heffron TP, Chu L, Dean B, West DA, DuVall SL, et al. Prevalence of acid-reducing agents (ARA) in cancer populations and ARA drug–drug interaction potential for molecular targeted agents in clinical development. Mol Pharm. 2013;10(11):4055–62. https://doi.org/10.1021/mp400403s .
doi: 10.1021/mp400403s
pubmed: 24044612
Raoul JL, Edeline J, Simmet V, Moreau-Bachelard C, Gilabert M, Frénel JS. Long-term use of proton pump inhibitors in cancer patients: an opinion paper. Cancers. 2022;14(5):1156. https://doi.org/10.3390/cancers14051156 .
doi: 10.3390/cancers14051156
pubmed: 35267464
pmcid: 8909698
Buti S, Tommasi C, Scartabellati G, De Giorgi U, Brighi N, Rebuzzi SE, et al. The impact of proton-pump inhibitors administered with tyrosine kinase inhibitors in patients with metastatic renal cell carcinoma. Anticancer Drugs. 2023;34(1):178–86. https://doi.org/10.1097/cad.0000000000001356 .
doi: 10.1097/cad.0000000000001356
pubmed: 36539370
Lalani AK, McKay RR, Lin X, Simantov R, Kaymakcalan MD, Choueiri TK. Proton pump inhibitors and survival outcomes in patients with metastatic renal cell carcinoma. Clin Genitourin Cancer. 2017;15(6):724–32. https://doi.org/10.1016/j.clgc.2017.05.019 .
doi: 10.1016/j.clgc.2017.05.019
pubmed: 28645482
Budha NR, Frymoyer A, Smelick GS, Jin JY, Yago MR, Dresser MJ, et al. Drug absorption interactions between oral targeted anticancer agents and PPIs: is pH-dependent solubility the Achilles heel of targeted therapy? Clin Pharmacol Ther. 2012;92(2):203–13. https://doi.org/10.1038/clpt.2012.73 .
doi: 10.1038/clpt.2012.73
pubmed: 22739140
Dodd S, Kollipara S, Sanchez-Felix M, Kim H, Meng Q, Beato S, et al. Prediction of ARA/PPI drug-drug interactions at the drug discovery and development interface. J Pharm Sci. 2019;108(1):87–101. https://doi.org/10.1016/j.xphs.2018.10.032 .
doi: 10.1016/j.xphs.2018.10.032
pubmed: 30385285
Sachs G, Shin JM, Hunt R. Novel approaches to inhibition of gastric acid secretion. Curr Gastroenterol Rep. 2010;12(6):437–47. https://doi.org/10.1007/s11894-010-0149-5 .
doi: 10.1007/s11894-010-0149-5
pubmed: 20924727
pmcid: 2974194
Shin JM, Sachs G. Pharmacology of proton pump inhibitors. Curr Gastroenterol Rep. 2008;10(6):528–34. https://doi.org/10.1007/s11894-008-0098-4 .
doi: 10.1007/s11894-008-0098-4
pubmed: 19006606
pmcid: 2855237
Zhang L, Wu F, Lee SC, Zhao H, Zhang L. pH-dependent drug–drug interactions for weak base drugs: potential implications for new drug development. Clin Pharmacol Ther. 2014;96(2):266–77. https://doi.org/10.1038/clpt.2014.87 .
doi: 10.1038/clpt.2014.87
pubmed: 24733008
SPRYCEL®. (dasatinib) USFDA Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021986s7s8lbl.pdf . Accessed 13 Mar 2024.
IRESSA. (gefitinib) USFDA Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/206995s003lbl.pdf . Accessed 13 Mar 2024.
TARCEVA®. (erlotinib) USFDA Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021743s14s16lbl.pdf . Accessed 13 Mar 2024.
BOSULIF®. Mar (bosutinib) USFDA Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203341lbl.pdf . Accessed 13 2024.
NERLYNX (neratinib.) USFDA Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208051s000lbl.pdf . Accessed 13 Mar 2024.
VIZIMPRO®. (dacomitinib) USFDA Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211288s000lbl.pdf . Accessed 13 Mar 2024.
TRUSELTIQ (infigratinib.) USFDA Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214622s000lbl.pdf . Accessed 13 Mar 2024.
TURALIO®. (pexidartinib) USFDA Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/211810s009lbl.pdf . Accessed 13 Mar 2024.
RETEVMO®. (selpercatinib) USFDA Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/213246s008lbl.pdf . Accessed 13th Mar 2024.
Yu G, Zheng QS, Wang DX, Zhou HH, Li GF. Drug interactions between tyrosine-kinase inhibitors and acid suppressive agents: more than meets the eye. Lancet Oncol. 2014;15(11):e469–70. https://doi.org/10.1016/S1470-2045(14)70458-9 .
doi: 10.1016/S1470-2045(14)70458-9
pubmed: 25281461
Coleman CI, Limone B, Sobieraj DM, Lee S, Roberts MS, Kaur R, Alam T. Dosing frequency and medication adherence in chronic disease. J Manag Care Pharm. 18;(7). https://doi.org/10.18553/jmcp.2012.18.7.527 .
Srivastava K, Arora A, Kataria A, Cappelleri JC, Sadosky A, Peterson AM. Impact of reducing dosing frequency on adherence to oral therapies: a literature review and meta-analysis. Patient Prefer Adherence. 2013;7:419–34. https://doi.org/10.2147/PPA.S44646 .
doi: 10.2147/PPA.S44646
pubmed: 23737662
pmcid: 3669002
Gianotti N, Galli L, Bocchiola B, Cahua T, Panzini P, Zandonà D, Salpietro S, Maillard M, Danise A, Pazzi A, Lazzarin A, Castagna A. Number of daily pills, dosing schedule, self-reported adherence and health status in 2010: a large cross-sectional study of HIV-infected patients on antiretroviral therapy. HIV Med. 2013;14(3):153–60. https://doi.org/10.1111/j.1468-1293.2012.01046.x .
doi: 10.1111/j.1468-1293.2012.01046.x
pubmed: 22994659
Minasian L, Rosen O, Auclair D, Rahman A, Pazdur R, Schilsky RL. Optimizing dosing of oncology drugs. Clin Pharmacol Ther. 2014;96(5):572–9. https://doi.org/10.1038/clpt.2014.153 .
doi: 10.1038/clpt.2014.153
pubmed: 25105705
Ghadi R, Dand N. BCS class IV drugs: highly notorious candidates for formulation development. J Control Rel. 2017;248:71–95. https://doi.org/10.1016/j.jconrel.2017.01.014 .
doi: 10.1016/j.jconrel.2017.01.014
Jabbour EJ, Kantarjian H, Eliasson L, Megan Cornelison A, Marin D. Patient adherence to tyrosine kinase inhibitor therapy in chronic myeloid leukemia. Am J Hematol. 2012;87(7):687–91. https://doi.org/10.1002/ajh.23180 .
doi: 10.1002/ajh.23180
pubmed: 22473898
Jacobsen P, Sweet KL, Lee YH, Tinsley S, Lancet JE, Komrokji RS, et al. Adherence to tyrosine kinase inhibitor (TKI) therapy in patients with chronic myeloid leukemia (CML). Blood. 2011;118(21):4431. https://doi.org/10.1182/blood.V118.21.4431.4431 .
doi: 10.1182/blood.V118.21.4431.4431
Darkow T, Henk HJ, Thomas SK, Feng W, Baladi JF, Goldberg GA, et al. Treatment interruptions and non-adherence with imatinib and associated healthcare costs: a retrospective analysis among managed care patients with chronic myelogenous leukaemia. PharmacoEconomics. 2007;25:481–96. https://doi.org/10.2165/00019053-200725060-00004 .
doi: 10.2165/00019053-200725060-00004
pubmed: 17523753
Gridelli C, Tiseo M, Cortinovis DL, Migliorino MR, Barbieri V, Bironzo P, et al. Sharing experience with Anaplastic Lymphoma Kinase Tyrosine Kinase Inhibitors in Lung Cancer: An Italian Expert Panel discussion. Curr Oncol. 2023;30(11):10033–42. https://doi.org/10.3390/curroncol30110729 .
doi: 10.3390/curroncol30110729
pubmed: 37999149
pmcid: 10670405
ZELBORAF®. (vemurafenib) USFDA Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/202429s012lbl.pdf . Accesses 13 Mar 2024.
Strauss JS, Leyden JJ, Lucky AW, Lookingbill DP, Drake LA, Hanifin JM, et al. Safety of a new micronized formulation of isotretinoin in patients with severe recalcitrant nodular acne: a randomized trial comparing micronized isotretinoin with standard isotretinoin. J Am Acad Dermatol. 2001;45(2):196–207. https://doi.org/10.1067/mjd.2001.115966 .
doi: 10.1067/mjd.2001.115966
pubmed: 11464180
Kollipara S, Gandhi RK. Pharmacokinetic aspects and in vitro–in vivo correlation potential for lipid-based formulations. Acta Pharm Sinica B. 2014;4(5):333–49. https://doi.org/10.1016/j.apsb.2014.09.001 .
doi: 10.1016/j.apsb.2014.09.001
Williams HD, Ford L, Han S, Tangso KJ, Lim S, Shackleford DM, et al. Enhancing the oral absorption of kinase inhibitors using lipophilic salts and lipid-based formulations. Mol Pharm. 2018;15(12):5678–96. https://doi.org/10.1021/acs.molpharmaceut.8b00858 .
doi: 10.1021/acs.molpharmaceut.8b00858
pubmed: 30376336
Solymosi T, Ötvös Z, Angi R, Ordasi B, Jordán T, Molnár L, et al. Novel formulation of abiraterone acetate might allow significant dose reduction and eliminates substantial positive food effect. Cancer Chemother Pharmacol. 2017;80:723–8. https://doi.org/10.1007/s00280-017-3406-6 .
doi: 10.1007/s00280-017-3406-6
pubmed: 28776077
Chougule M, Sirvi A, Saini V, Kashyap M, Sangamwar AT. Enhanced biopharmaceutical performance of brick dust molecule nilotinib via stabilized amorphous nanosuspension using a facile acid–base neutralization approach. Drug Del Transl Res. 2023;13(10):2503–19. https://doi.org/10.1007/s13346-023-01334-7 .
doi: 10.1007/s13346-023-01334-7
CALQUENCE
Sharma S, Pepin X, Burri H, Zheng L, Kuptsova-Clarkson N, de Jong A, et al. Bioequivalence and relative bioavailability studies to assess a New Acalabrutinib Formulation that enables Coadministration with Proton‐pump inhibitors. Clin Pharmacol Drug Dev. 2022;11(11):1294–307. https://doi.org/10.1002/cpdd.1153 .
doi: 10.1002/cpdd.1153
pubmed: 36029150
pmcid: 9804870
IBRANCE
IBRANCE
Song Y. Acid-base interactions in amorphous solid dispersions: Formulation strategy for tyrosine kinase inhibitors (Doctoral dissertation, Purdue University). https://docs.lib.purdue.edu/open_access_dissertations/1147 .
Larfors G, Lennernäs H, Liljebris C, Brisander M, Jesson G, Andersson P, et al. Comedication of proton pump inhibitors and dasatinib is common in CML but XS004, a novel amorphous solid dispersion formulation of dasatinib, provides improved uptake and low pH-dependency, minimizing unwanted drug-drug interactions. Blood. 2022;140(Supplement 1):6769–70. https://doi.org/10.1182/blood-2022-156487 .
doi: 10.1182/blood-2022-156487
Mudie DM, Stewart AM, Rosales JA, Biswas N, Adam MS, Smith A, et al. Amorphous solid dispersion tablets overcome acalabrutinib Ph effect in dogs. Pharmaceutics. 2021;13(4):557. https://doi.org/10.3390/pharmaceutics13040557 .
doi: 10.3390/pharmaceutics13040557
pubmed: 33921109
pmcid: 8071435
Verstovsek S, Yeleswaram S, Hou K, Chen X, Erickson-Viitanen S. Sustained‐release ruxolitinib: findings from a phase 1 study in healthy subjects and a phase 2 study in patients with myelofibrosis. Hematol Oncol. 2018;36(4):701–8. https://doi.org/10.1002/hon.2544 .
doi: 10.1002/hon.2544
pubmed: 30105794
pmcid: 6221065
Sedighi M, Rahimi F, Shahbazi MA, Rezayan AH, Kettiger H, Einfalt T, Huwyler J, et al. Controlled tyrosine kinase inhibitor delivery to liver cancer cells by gate-capped mesoporous silica nanoparticles. ACS Appl Bio Mater. 2019;3(1):239–51. https://doi.org/10.1021/acsabm.9b00772 .
doi: 10.1021/acsabm.9b00772
Shinde A, Panchal K, Katke S, Paliwal R, Chaurasiya A. Tyrosine kinase inhibitors as next generation oncological therapeutics: current strategies, limitations and future perspectives. Therapies. 2022;77(4):425–43. https://doi.org/10.1016/j.therap.2021.10.010 .
doi: 10.1016/j.therap.2021.10.010
Salmaso S, Mastrotto F, Roverso M, Gandin V, De Martin S, Gabbia D, et al. Tyrosine kinase inhibitor prodrug-loaded liposomes for controlled release at tumor microenvironment. J Control Rel. 2021;340:318–30. https://doi.org/10.1016/j.jconrel.2021.11.006 .
doi: 10.1016/j.jconrel.2021.11.006
Bhattiprolu AK, Kollipara S, Ahmed T, Boddu R, Chachad S. Utility of physiologically based biopharmaceutics modeling (PBBM) in Regulatory Perspective: application to Supersede f2, enabling Biowaivers & Creation of Dissolution Safe Space. J Pharm Sci. 2022;111(12):3397–410. https://doi.org/10.1016/j.xphs.2022.09.003 .
doi: 10.1016/j.xphs.2022.09.003
pubmed: 36096285
Ahmed T, Kollipara S, Boddu R, Bhattiprolu AK. Biopharmaceutics Risk Assessment—Connecting critical bioavailability attributes with in Vitro, in vivo Properties and physiologically based Biopharmaceutics Modeling to Enable Generic Regulatory submissions. AAPS J. 2023;25(5):77. https://doi.org/10.1208/s12248-023-00837-y .
doi: 10.1208/s12248-023-00837-y
pubmed: 37498474
Boddu R, Kollipara S, Vijaywargi G, Ahmed T. Power of integrating PBPK with PBBM (PBPK-BM): a single model predicting food effect, gender impact, drug-drug interactions and bioequivalence in fasting & fed conditions. Xenobiotica. 2023;53(4):260–78. https://doi.org/10.1080/00498254.2023.2238048 .
doi: 10.1080/00498254.2023.2238048
pubmed: 37471259
Wu D, Sanghavi M, Kollipara S, Ahmed T, Saini AK, Heimbach T. Physiologically based pharmacokinetics modeling in Biopharmaceutics: Case studies for establishing the bioequivalence safe space for innovator and generic drugs. Pharm Res. 2023;40(2):337–57. https://doi.org/10.1007/s11095-022-03319-6 .
doi: 10.1007/s11095-022-03319-6
pubmed: 35840856
Laisney M, Heimbach T, Mueller-Zsigmondy M, Blumenstein L, Costa R, Ji Y. Physiologically based biopharmaceutics modeling to demonstrate virtual bioequivalence and bioequivalence safe-space for ribociclib which has permeation rate-controlled absorption. J Pharm Sci. 2022;111(1):274–84. https://doi.org/10.1016/j.xphs.2021.10.017 .
doi: 10.1016/j.xphs.2021.10.017
pubmed: 34678270
Kollipara S, Boddu R, Ahmed T, Chachad S. Simplified model-dependent and model-independent approaches for Dissolution Profile comparison for oral products: Regulatory Perspective for Generic Product Development. AAPS PharmSciTech. 2022;23(1):53. https://doi.org/10.1208/s12249-021-02203-7 .
doi: 10.1208/s12249-021-02203-7
pubmed: 35028797
Parrott N, Stillhart C, Lindenberg M, Wagner B, Kowalski K, Guerini E, et al. Physiologically based absorption modelling to explore the impact of food and gastric pH changes on the pharmacokinetics of entrectinib. AAPS J. 2022;22:1–3. https://doi.org/10.1208/s12248-020-00463-y .
doi: 10.1208/s12248-020-00463-y
Pepin X, McAlpine V, Moir A, Mann J. Acalabrutinib maleate tablets: the physiologically based Biopharmaceutics Model behind the drug product dissolution specification. Mol Pharm. 2023;20(4):2181–93. https://doi.org/10.1021/acs.molpharmaceut.3c00005 .
doi: 10.1021/acs.molpharmaceut.3c00005
pubmed: 36859819
Kollipara S, Ahmed T, Praveen S. Physiologically based pharmacokinetic modelling to predict drug-drug interactions for encorafenib. Part I. Model building, validation, and prospective predictions with enzyme inhibitors, inducers, and transporter inhibitors. Xenobiotica. 2023;53(5):366–81. https://doi.org/10.1080/00498254.2023.2250856 .
doi: 10.1080/00498254.2023.2250856
pubmed: 37609899
Kollipara S, Ahmed T, Praveen S. Physiologically based pharmacokinetic modeling (PBPK) to predict drug-drug interactions for encorafenib. Part II. Prospective predictions in hepatic and renal impaired populations with clinical inhibitors and inducers. Xenobiotica. 2023;53(5):339–356. https://doi.org/10.1080/00498254.2023.2246153