Multi-target measurable residual disease assessed by error-corrected sequencing in patients with acute myeloid leukemia: An ALFA study.


Journal

Blood cancer journal
ISSN: 2044-5385
Titre abrégé: Blood Cancer J
Pays: United States
ID NLM: 101568469

Informations de publication

Date de publication:
13 Jun 2024
Historique:
received: 03 04 2024
accepted: 31 05 2024
revised: 29 05 2024
medline: 14 6 2024
pubmed: 14 6 2024
entrez: 13 6 2024
Statut: epublish

Résumé

The evaluation of measurable residual disease (MRD) in acute myeloid leukemia (AML) using comprehensive mutation analysis by next-generation sequencing (NGS) has been investigated in several studies. However controversial results exist regarding the detection of persisting mutations in DNMT3A, TET2, and ASXL1 (DTA). Benchmarking of NGS-MRD taking into account other molecular MRD strategies has to be done. Here, we performed error-corrected-NGS-MRD in 189 patients homogeneously treated in the ALFA-0702 study (NCT00932412). Persistence of non-DTA mutations (HR = 2.23 for RFS and 2.26 for OS), and DTA mutations (HR = 2.16 for OS) were associated with poorer prognosis in multivariate analysis. Persistence of at least two mutations in complete remission (CR) was associated with a higher cumulative incidence of relapse (CIR) (HR = 3.71, p < 0.0001), lower RFS (HR = 3.36, p < 0.0001) and OS (HR = 3.81, p = 0.00023) whereas persistence of only one mutation was not. In 100 analyzable patients, WT1-MRD, but not NGS-MRD, was an independent factor for RFS and OS. In the subset of 67 NPM1 mutated patients, both NPM1 mutation detection (p = 0.0059) and NGS-MRD (p = 0.035) status were associated with CIR. We conclude that detectable NGS-MRD including DTA mutations correlates with unfavorable prognosis in AML. Its integration with alternative MRD strategies in AML management warrants further investigations.

Identifiants

pubmed: 38871702
doi: 10.1038/s41408-024-01078-8
pii: 10.1038/s41408-024-01078-8
doi:

Substances chimiques

Nucleophosmin 117896-08-9
NPM1 protein, human 0
DNA Methyltransferase 3A EC 2.1.1.37
DNMT3A protein, human 0
DNA (Cytosine-5-)-Methyltransferases EC 2.1.1.37
Repressor Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

97

Informations de copyright

© 2024. The Author(s).

Références

Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.
pubmed: 26376137 doi: 10.1056/NEJMra1406184
Hirsch P, Zhang Y, Tang R, Joulin V, Boutroux H, Pronier E, et al. Genetic hierarchy and temporal variegation in the clonal history of acute myeloid leukaemia. Nat Commun. 2016;7:12475.
pubmed: 27534895 pmcid: 4992157 doi: 10.1038/ncomms12475
Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33.
pubmed: 24522528 pmcid: 4991939 doi: 10.1038/nature13038
Martignoles J-A, Delhommeau F, Hirsch P. Genetic hierarchy of acute myeloid leukemia: from clonal hematopoiesis to molecular residual disease. Int J Mol Sci. 2018;19:3850.
pubmed: 30513905 pmcid: 6321602 doi: 10.3390/ijms19123850
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl J Med. 2016;374:2209–21.
pubmed: 27276561 pmcid: 4979995 doi: 10.1056/NEJMoa1516192
Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.
doi: 10.1056/NEJMoa1301689
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36:1703–19.
pubmed: 35732831 pmcid: 9252913 doi: 10.1038/s41375-022-01613-1
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka H-M, et al. International consensus classification of myeloid neoplasms and acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140:1200–28.
pubmed: 35767897 pmcid: 9479031 doi: 10.1182/blood.2022015850
Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140:1345–77.
pubmed: 35797463 doi: 10.1182/blood.2022016867
Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.
pubmed: 27895058 pmcid: 5291965 doi: 10.1182/blood-2016-08-733196
Terwijn M, van Putten WLJ, Kelder A, van der Velden VHJ, Brooimans RA, Pabst T, et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. J Clin Oncol J Am Soc Clin Oncol. 2013;31:3889–97.
doi: 10.1200/JCO.2012.45.9628
Heuser M, Freeman SD, Ossenkoppele GJ, Buccisano F, Hourigan CS, Ngai LL, et al. 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2021;138:2753–67.
pubmed: 34724563 pmcid: 8718623 doi: 10.1182/blood.2021013626
Freeman SD, Hills RK, Virgo P, Khan N, Couzens S, Dillon R, et al. Measurable residual disease at induction redefines partial response in acute myeloid leukemia and stratifies outcomes in patients at standard risk without NPM1 mutations. J Clin Oncol J Am Soc Clin Oncol. 2018;36:1486–97.
doi: 10.1200/JCO.2017.76.3425
Yin JAL, O’Brien MA, Hills RK, Daly SB, Wheatley K, Burnett AK. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood. 2012;120:2826–35.
pubmed: 22875911 doi: 10.1182/blood-2012-06-435669
Jourdan E, Boissel N, Chevret S, Delabesse E, Renneville A, Cornillet P, et al. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood. 2013;121:2213–23.
pubmed: 23321257 doi: 10.1182/blood-2012-10-462879
Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A, Grech A, et al. Assessment of minimal residual disease in standard-risk AML. N. Engl J Med. 2016;374:422–33.
pubmed: 26789727 doi: 10.1056/NEJMoa1507471
Balsat M, Renneville A, Thomas X, de Botton S, Caillot D, Marceau A, et al. Postinduction minimal residual disease predicts outcome and benefit from allogeneic stem cell transplantation in acute myeloid leukemia with NPM1 mutation: a study by the Acute Leukemia French Association Group. J Clin Oncol J Am Soc Clin Oncol. 2017;35:185–93.
doi: 10.1200/JCO.2016.67.1875
Fenwarth L, Thomas X, de Botton S, Duployez N, Bourhis J-H, Lesieur A, et al. A personalized approach to guide allogeneic stem cell transplantation in younger adults with acute myeloid leukemia. Blood. 2021;137:524–32.
pubmed: 32871585 doi: 10.1182/blood.2020005524
Cilloni D, Gottardi E, De Micheli D, Serra A, Volpe G, Messa F, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia. 2002;16:2115–21.
pubmed: 12357365 doi: 10.1038/sj.leu.2402675
Østergaard M, Olesen LH, Hasle H, Kjeldsen E, Hokland P. WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukaemia patients - results from a single-centre study. Br J Haematol. 2004;125:590–600.
pubmed: 15147374 doi: 10.1111/j.1365-2141.2004.04952.x
Lapillonne H, Renneville A, Auvrignon A, Flamant C, Blaise A, Perot C, et al. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol J Am Soc Clin Oncol. 2006;24:1507–15.
doi: 10.1200/JCO.2005.03.5303
Debarri H, Lebon D, Roumier C, Cheok M, Marceau-Renaut A, Nibourel O, et al. IDH1/2 but not DNMT3A mutations are suitable targets for minimal residual disease monitoring in acute myeloid leukemia patients: a study by the Acute Leukemia French Association. Oncotarget. 2015;6:42345–53.
pubmed: 26486081 pmcid: 4747230 doi: 10.18632/oncotarget.5645
Kohlmann A, Nadarajah N, Alpermann T, Grossmann V, Schindela S, Dicker F, et al. Monitoring of residual disease by next-generation deep-sequencing of RUNX1 mutations can identify acute myeloid leukemia patients with resistant disease. Leukemia. 2014;28:129–37.
pubmed: 23958918 doi: 10.1038/leu.2013.239
Morita K, Kantarjian HM, Wang F, Yan Y, Bueso-Ramos C, Sasaki K, et al. Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia. J Clin Oncol J Am Soc Clin Oncol. 2018;36:1788–97.
doi: 10.1200/JCO.2017.77.6757
Klco JM, Miller CA, Griffith M, Petti A, Spencer DH, Ketkar-Kulkarni S, et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA. 2015;314:811–22.
pubmed: 26305651 pmcid: 4621257 doi: 10.1001/jama.2015.9643
Tsai C-H, Tang J-L, Tien F-M, Kuo Y-Y, Wu D-C, Lin C-C, et al. Clinical implications of sequential MRD monitoring by NGS at 2 time points after chemotherapy in patients with AML. Blood Adv. 2021;5:2456–66.
pubmed: 33999144 pmcid: 8152512 doi: 10.1182/bloodadvances.2020003738
Thol F, Gabdoulline R, Liebich A, Klement P, Schiller J, Kandziora C, et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood. 2018;132:1703–13.
pubmed: 30190321 doi: 10.1182/blood-2018-02-829911
Jongen-Lavrencic M, Grob T, Hanekamp D, Kavelaars FG, Al Hinai A, Zeilemaker A, et al. Molecular minimal residual disease in acute myeloid leukemia. N. Engl J Med. 2018;378:1189–99.
pubmed: 29601269 doi: 10.1056/NEJMoa1716863
Hirsch P, Tang R, Abermil N, Flandrin P, Moatti H, Favale F, et al. Precision and prognostic value of clone-specific minimal residual disease in acute myeloid leukemia. Haematologica. 2017;102:1227–37.
pubmed: 28302711 pmcid: 5566032 doi: 10.3324/haematol.2016.159681
Heuser M, Heida B, Büttner K, Wienecke CP, Teich K, Funke C, et al. Posttransplantation MRD monitoring in patients with AML by next-generation sequencing using DTA and non-DTA mutations. Blood Adv. 2021;5:2294–304.
pubmed: 33929500 pmcid: 8114555 doi: 10.1182/bloodadvances.2021004367
Hourigan CS, Dillon LW, Gui G, Logan BR, Fei M, Ghannam J, et al. Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. J Clin Oncol J Am Soc Clin Oncol. 2020;38:1273–83.
doi: 10.1200/JCO.19.03011
Patkar N, Kakirde C, Shaikh AF, Salve R, Bhanshe P, Chatterjee G, et al. Clinical impact of panel-based error-corrected next generation sequencing versus flow cytometry to detect measurable residual disease (MRD) in acute myeloid leukemia (AML). Leukemia. 2021;35:1392–404.
pubmed: 33558666 pmcid: 8102181 doi: 10.1038/s41375-021-01131-6
Khaire NS, Kim DDH, Law AD. DNA sequencing in adults with acute myeloid leukemia to detect residual disease prior to hematopoietic cell transplant. JAMA. 2023;330:190.
pubmed: 37432435 doi: 10.1001/jama.2023.8650
Thomas X, de Botton S, Chevret S, Caillot D, Raffoux E, Lemasle E, et al. Randomized Phase Ii study of clofarabine-based consolidation for younger adults with acute myeloid leukemia in first remission. J Clin Oncol J Am Soc Clin Oncol. 2017;35:1223–30.
doi: 10.1200/JCO.2016.70.4551
Renneville A, Boissel N, Nibourel O, Berthon C, Helevaut N, Gardin C, et al. Prognostic significance of DNA methyltransferase 3A mutations in cytogenetically normal acute myeloid leukemia: a study by the Acute Leukemia French Association. Leukemia. 2012;26:1247–54.
pubmed: 22289988 doi: 10.1038/leu.2011.382
Lambert J, Lambert J, Thomas X, Marceau-Renaut A, Micol J-B, Renneville A, et al. Early detection of WT1 measurable residual disease identifies high-risk patients, independent of transplantation in AML. Blood Adv. 2021;5:5258–68.
pubmed: 34625784 pmcid: 9153044 doi: 10.1182/bloodadvances.2021004322
Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76.
pubmed: 25550361 pmcid: 4342352 doi: 10.1182/blood-2014-11-610543
Rothenberg-Thurley M, Amler S, Goerlich D, Köhnke T, Konstandin NP, Schneider S, et al. Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia. Leukemia. 2018;32:1598–608.
pubmed: 29472724 pmcid: 6035153 doi: 10.1038/s41375-018-0034-z
Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl J Med. 2014;371:2488–98.
pubmed: 25426837 pmcid: 4306669 doi: 10.1056/NEJMoa1408617
Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl J Med. 2014;371:2477–87.
pubmed: 25426838 pmcid: 4290021 doi: 10.1056/NEJMoa1409405
Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.
pubmed: 25931582 pmcid: 4624443 doi: 10.1182/blood-2015-03-631747
Warren JT, Link DC. Clonal hematopoiesis and risk for hematologic malignancy. Blood. 2020;136:1599–605.
pubmed: 32736382 pmcid: 8209630
Weeks LD, Niroula A, Neuberg D, Wong W, Lindsley RC, Luskin M, et al. Prediction of risk for myeloid malignancy in clonal hematopoiesis. NEJM Evid. 2023;2. https://doi.org/10.1056/evidoa2200310 .
van Zeventer IA, de Graaf AO, Salzbrunn JB, Nolte IM, Kamphuis P, Dinmohamed A, et al. Evolutionary landscape of clonal hematopoiesis in 3,359 individuals from the general population. Cancer Cell. 2023;41:1017–31.e4.
pubmed: 37146604 doi: 10.1016/j.ccell.2023.04.006
Dillon LW, Gui G, Page KM, Ravindra N, Wong ZC, Andrew G, et al. DNA sequencing to detect residual disease in adults with acute myeloid leukemia prior to hematopoietic cell transplant. JAMA. 2023;329:745–55.
pubmed: 36881031 pmcid: 9993183 doi: 10.1001/jama.2023.1363

Auteurs

Pierre Hirsch (P)

Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, 75012, Paris, France. Pierre.hirsch@aphp.fr.

Jérôme Lambert (J)

Biostatistics and Medical Information Department, Hôpital Saint Louis, Paris, France.
INSERM U1153 - ECSTRRA Team, Hôpital Saint Louis, Paris, France.

Maxime Bucci (M)

Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France.

Caroline Deswarte (C)

Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, 75012, Paris, France.

Augustin Boudry (A)

Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France.

Juliette Lambert (J)

Service d'Hématologie Clinique, André Mignot Hospital, Le Chesnay, France.

Laurene Fenwarth (L)

Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France.

Jean-Baptiste Micol (JB)

Gustave Roussy, Université Paris-Saclay, Villejuif, France.

Christine Terré (C)

Laboratory of Hematology, André Mignot Hospital, Le Chesnay, France.

Karine Celli-Lebras (K)

ALFA Group, Paris, France.

Xavier Thomas (X)

Lyon Sud, University Hospital, 69495 Pierre-Bénite, Lyon, France.

Hervé Dombret (H)

Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France.

Nicolas Duployez (N)

Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France.

Claude Preudhomme (C)

Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France.

Raphael Itzykson (R)

Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France.
Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.

Francois Delhommeau (F)

Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, 75012, Paris, France.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH