Using a DNA mini-barcode within the ITS region to identify toxic Amanita in mushroom poisoning cases.
Amanita
DNA mini-barcoding
Internal Transcribed Spacer (ITS)
Species identification
Toxic mushroom
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
17 Jun 2024
17 Jun 2024
Historique:
received:
20
01
2024
accepted:
02
06
2024
revised:
28
05
2024
medline:
17
6
2024
pubmed:
17
6
2024
entrez:
17
6
2024
Statut:
epublish
Résumé
Mushroom poisoning contributes significantly to global foodborne diseases and related fatalities. Amanita mushrooms frequently cause such poisonings; however, identifying these toxic species is challenging due to the unavailability of fresh and intact samples. It is often necessary to analyze residues, vomitus, or stomach extracts to obtain DNA sequences for the identification of species responsible for causing food poisoning. This usually proves challenging to obtain usable DNA sequences that can be analyzed using conventional molecular biology techniques. Therefore, this study aimed to develop a DNA mini-barcoding method for the identification of Amanita species. Following the evaluation and optimization of universal primers for DNA mini-barcoding in Amanita mushrooms, we found that the internal transcribed spacer (ITS) gene sequence primer ITS-a was the most suitable DNA barcode primer for identifying Amanita species. Forty-three Amanita samples were subsequently amplified and sequenced. The sequences obtained were analyzed for intra- and inter-species genetic distances, and a phylogenetic tree was constructed. The findings indicated that the designed primers had strong universality among the Amanita samples and could accurately identify the target gene fragment with a length of 290 bp. Notably, the DNA mini-barcode accurately identified the 43 Amanita samples, demonstrating high consistency with the conventional DNA barcode. Furthermore, it effectively identified DNA from digested samples. In summary, this DNA mini-barcode is a promising tool for detecting accidental ingestion of toxic Amanita mushrooms. It may be used as an optimal barcode for species identification and traceability in events of Amanita-induced mushroom poisoning. KEY POINTS: • Development of a DNA mini-barcoding method for Amanita species identification without fresh samples. • The ITS-a primer set was optimized for robust universality in Amanita samples. • The mini-barcode is suitable for screening toxic mushroom species in mushroom poisoning cases.
Identifiants
pubmed: 38884656
doi: 10.1007/s00253-024-13219-x
pii: 10.1007/s00253-024-13219-x
doi:
Substances chimiques
DNA, Fungal
0
DNA Primers
0
DNA, Ribosomal Spacer
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
376Subventions
Organisme : Key Technologies Research and Development Program
ID : 2022YFF1101000
Organisme : Key Technologies Research and Development Program
ID : 2023YFF1104700
Informations de copyright
© 2024. The Author(s).
Références
Badotti F, de Oliveira FS, Garcia CF, Vaz ABM, Fonseca PLC, Nahum LA, Oliveira G, Góes-Neto A (2017) Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). BMC Microbiol 17(1):42
pubmed: 28228107
pmcid: 5322588
doi: 10.1186/s12866-017-0958-x
Bagley JC, de Aquino PDPU, Breitman MF, Langeani F, Colli GR (2019) DNA barcode and minibarcode identification of freshwater fishes from Cerrado headwater streams in Central Brazil. J Fish Biol 95(4):1046–1060
pubmed: 31304599
doi: 10.1111/jfb.14098
Dadpour B, Tajoddini S, Rajabi M, Afshari R (2017) Mushroom poisoning in the northeast of Iran; a retrospective 6-year epidemiologic study. Emergency 5(1):e23
pubmed: 28286830
pmcid: 5325892
Diaz JH (2018) Amatoxin-containing mushroom poisonings: species, toxidromes, treatments, and outcomes. Wilderness Environ Med 29(1):111–118
pubmed: 29325729
doi: 10.1016/j.wem.2017.10.002
Dieffenbach CW, Lowe TMJ, Dveksler GS (1993) General concepts for PCR primer design. PCR Methods Appl 3(3):S30–S37
pubmed: 8118394
doi: 10.1101/gr.3.3.S30
Doğan HH (2013) Evaluation of phenolic compounds, antioxidant activities and fatty acid composition of Amanita ovoidea (Bull.) Link in Turkey. J Food Compos Anal 31(1):87–93
doi: 10.1016/j.jfca.2013.05.003
Garnica S, Schön ME, Abarenkov K, Riess K, Liimatainen K, Niskanen T, Dima B, Soop K, Frøslev TG, Jeppesen TS, Peintner U, Kuhnert-Finkernagel R, Brandrud TE, Saar G, Oertel B, Ammirati JF (2016) Determining threshold values for barcoding fungi: lessons from Cortinarius (Basidiomycota), a highly diverse and widespread ectomycorrhizal genus. FEMS Microbiol Ecol 92(4): fiw045
Govender A, Groeneveld J, Singh S, Willows-Munro S (2019) The design and testing of mini-barcode markers in marine lobsters. PLoS ONE 14(1):e0210492
pubmed: 30677051
pmcid: 6345471
doi: 10.1371/journal.pone.0210492
Hajibabaei M, McKenna C (2012) DNA Mini-barcodes. In: Kress WJ, Erickson DL (eds) DNA barcodes: methods and protocols. Humana Press, Totowa, NJ, pp 339–353
doi: 10.1007/978-1-61779-591-6_15
Hajibabaei M, Smith MA, Janzen DH, Rodriguez JJ, Whitfield JB, Hebert PDN (2006) A minimalist barcode can identify a specimen whose DNA is degraded. Mol Ecol Notes 6(4):959–964
doi: 10.1111/j.1471-8286.2006.01470.x
He M-Q, Chuankid B, Hyde KD, Ratchadawan C, Zhao R-L (2018) A new section and species of Agaricussubgenus Pseudochitonia from Thailand. MycoKeys 40:53–67
doi: 10.3897/mycokeys.40.26918
Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. P Roy Soc Lond B Bio 270(1512):313–321
doi: 10.1098/rspb.2002.2218
Hellberg RS, Morrissey MT (2011) Advances in DNA-based techniques for the detection of seafood species substitution on the commercial market. JALA 16(4):308
pubmed: 21764026
Justo A, Morgenstern I, Hallen-Adams HE, Hibbett DS (2010) Convergent evolution of sequestrate forms in Amanita under Mediterranean climate conditions. Mycologia 102(3):675–688
pubmed: 20524599
doi: 10.3852/09-191
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874
pubmed: 27004904
pmcid: 8210823
doi: 10.1093/molbev/msw054
Lalitha SJBS (2000) Primer Premier 5. Biotech Software & Internet Report: The Computer Software. J Sci 1(6):270–272
Li J, He X, Liu X-B, Yang ZL, Zhao Z-W (2017) Species clarification of oyster mushrooms in China and their DNA barcoding. Mycol Prog 16(3):191–203
doi: 10.1007/s11557-016-1266-9
Li W, Pires SM, Liu Z, Ma X, Guo Y (2020) Surveillance of foodborne disease outbreaks in China, 2003–2017. Food Control 118:107359
doi: 10.1016/j.foodcont.2020.107359
Li W, Pires SM, Liu Z, Liang J, Wang Y, Chen W, Liu C, Liu J, Han H, Fu P (2021) Mushroom poisoning outbreaks—China 2010–2020. CCDC Weekly 3(24):5
Lima A, Fortes RC, Novaes M, Percário S (2012) Poisonous mushrooms: a review of the most common intoxications. Nutr Hosp 27(2):402–408
pubmed: 22732961
Maeta K, Ochi T, Tokimoto K, Shimomura N, Aimi T (2008) Rapid species identification of cooked poisonous mushrooms by using real-time PCR. Appl Environ Microb 74(10):3306–3309
doi: 10.1128/AEM.02082-07
Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW, Nilsson RH, Hughes KW, Hofstetter V, Ammirati JF, Schoch CL, Langer E, Langer G, McLaughlin DJ, Wilson AW, Frøslev T, Ge ZW, Kerrigan RW, Slot JC, Yang ZL, Baroni TJ, Fischer M, Hosaka K, Matsuura K, Seidl MT, Vauras J, Hibbett DS (2007) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol Phylogenet Evol 43(2):430–451
pubmed: 17081773
doi: 10.1016/j.ympev.2006.08.024
Meusnier I, Singer GA, Landry JF, Hickey DA, Hebert PD, Hajibabaei M (2008) A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9(10):214
pubmed: 18474098
pmcid: 2396642
doi: 10.1186/1471-2164-9-214
Minekus M, Marie A, Alvito P, Ballance S, Bohn T, Bourlieu C, Carrière F, Boutrou R, Corredig M, Dupont D, Dufour C, Egger L, Golding M, Karakaya S, Kirkhus B, Le Feunteun S, Lesmes U, Macierzanka A, Mackie A, Brodkorb A (2014) A standardised static invitro digestion method suitable for food – an international consensus. Food Funct 5(6):1113–1124
pubmed: 24803111
doi: 10.1039/C3FO60702J
Nehal N, Choudhary B, Nagpure A, Gupta RK (2021) DNA barcoding: a modern age tool for detection of adulteration in food. Crit Rev Biotechnol 41(5):767–791
pubmed: 33530758
doi: 10.1080/07388551.2021.1874279
Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH (2008) Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform 4:193–201
doi: 10.4137/EBO.S653
Pan Y, Qiu D, Chen J, Yue Q (2020) Combining a COI mini-barcode with next-generation sequencing for animal origin ingredients identification in processed meat product. J Food Quality 2020:2907670
doi: 10.1155/2020/2907670
Parnmen S, Sikaphan S, Rangsiruji A, Leudang S, Boonpratuang T, Naksuwankul K (2016) Molecular identification of poisonous mushrooms using nuclear ITS region and peptide toxins: a retrospective study on fatal cases in Thailand. J Toxicol Sci 41(1):65–76
pubmed: 26763394
doi: 10.2131/jts.41.65
Qing CA, Li-Ping TANG, Zhu-Liang Y (2012) DNA barcoding of economically important mushrooms: a case study on lethal Amanitas from China. Plant Divers Resour 34(6):614–622
doi: 10.3724/SP.J.1143.2012.12140
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci 109(16):6241–6246
pubmed: 22454494
pmcid: 3341068
doi: 10.1073/pnas.1117018109
Shen Y, Guan L, Wang D, Gan X (2016) DNA barcoding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River. Ecol Evol 6(9):2702–2713
pubmed: 27066250
pmcid: 4798831
doi: 10.1002/ece3.2060
Shokralla S, Zhou X, Janzen DH, Hallwachs W, Landry J-F, Jacobus LM, Hajibabaei M (2011) Pyrosequencing for mini-barcoding of fresh and old museum specimens. PLoS ONE 6(7):e21252
pubmed: 21818256
pmcid: 3144868
doi: 10.1371/journal.pone.0021252
Somrithipol S, Pinruan U, Sommai S, Khamsuntorn P, Luangsa-ard JJ (2022) Mushroom poisoning in Thailand between 2003 and 2017. Mycoscience 63(6):267–273
pubmed: 37089521
pmcid: 10042301
doi: 10.47371/mycosci.2022.08.003
Tang LP, Cai Q, Lee SS, Buyck B, Zhang P, Yang ZL (2015) Taxonomy and phylogenetic position of species of Amanita sect. Vaginatae s.l. from tropical Africa. Mycol Prog 14(6):39
doi: 10.1007/s11557-015-1061-z
Tang S, Zhou Q, He Z, Luo T, Zhang P, Cai Q, Yang Z, Chen J, Chen Z (2016) Cyclopeptide toxins of lethal amanitas: compositions, distribution and phylogenetic implication. Toxicon 120:78–88
pubmed: 27476461
doi: 10.1016/j.toxicon.2016.07.018
Vaagt F, Haase I, Fischer M (2013) Loop-mediated isothermal amplification (LAMP)-based method for rapid mushroom species identification. J Agri Food Chem 61(8):1833–1840
doi: 10.1021/jf304824b
Velasco-Cuervo SM, Aguirre-Ramirez E, Gallo-Franco JJ, Obando RG, Toro-Perea N (2019) Saving DNA from museum specimens: the success of DNA mini-barcodes in haplotype reconstruction in the genus Anastrepha (Diptera: Tephritidae). J Adv Res 16:123–134
pubmed: 30899595
doi: 10.1016/j.jare.2018.11.001
Wang S, Guo H, Li J, Li W, Wang Q, Yu X (2019) Evaluation of five regions as DNA barcodes for identification of Lepista species (Tricholomataceae, Basidiomycota) from China. PeerJ 7:e7307–e7307
pubmed: 31341746
pmcid: 6637932
doi: 10.7717/peerj.7307
Wenming B, Ranran X, Liping C, Tao P, Hongtao L, Ying C (2021) DNA barcoding for identification of toxic Amanita Species. Food Sci 42(4):9
Wennig R, Eyer F, Schaper A, Zilker T, Andresen-Streichert H (2020) Mushroom Poisoning. Dtsch Arztebl Int 117(42):701–708
pubmed: 33559585
pmcid: 7868946
White J, Weinstein SA, De Haro L, Bédry R, Schaper A, Rumack BH, Zilker T (2019) Mushroom poisoning: a proposed new clinical classification. Toxicon 157(2019):53–65
pubmed: 30439442
doi: 10.1016/j.toxicon.2018.11.007
White TJ, Bruns T, Lee SJ, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322
Xing RR, Hu RR, Han JX, Deng TT, Chen YJFC (2019) DNA barcoding and mini-barcoding in authenticating processed animal-derived food: a case study involving the Chinese market. Food Chem 309:125653
pubmed: 31670116
doi: 10.1016/j.foodchem.2019.125653
Zervakis GI, Venturella G, Fryssouli V, Inglese P, Polemis E, Gargano ML (2018) Pleurotus opuntiae revisited – an insight to the phylogeny of dimitic Pleurotus species with emphasis on the P. djamor complex. Fungal Biol 123(3):188–199
Zhao L, Zhao X, Hengchao E, Fan T, Tian E, Wang C, Zhang Y, Li X, Zhao Z, Zhou C (2023) Multiplex TaqMan real-time PCR assay for high-throughput identification of highly toxic mushroom species-induced foodborne poisoning. Lwt 186:115211
doi: 10.1016/j.lwt.2023.115211
Zhao P, Ji SP, Cheng XH, Bau T, Dong HX, Gao XX (2021) DNA barcoding the mushroom spawns using EF-1α barcodes: a case study in oyster mushrooms (Pleurotus). Front Microbiol 12:624347
Zhou S, Guo L, Xu X, Song S, Liu L, Kuang H, Zhu Y, Xu L, Xu C (2022) Ultrasensitive paper sensor for simultaneous detection of alpha-amanitin and beta-amanitin by the production of monoclonal antibodies. Food Chem 396:133660
pubmed: 35839720
doi: 10.1016/j.foodchem.2022.133660
Zhou Q, Zhao B, Zhang J, Lu Z, Liang J, Li J (2023) High resolution melting of chloroplast mini-barcode in star anise (Illicium verum) authentication. Ind Crops Prod 197:116626
doi: 10.1016/j.indcrop.2023.116626