Targeting the conserved active site of splicing machines with specific and selective small molecule modulators.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
19 Jun 2024
Historique:
received: 21 06 2023
accepted: 06 05 2024
medline: 20 6 2024
pubmed: 20 6 2024
entrez: 19 6 2024
Statut: epublish

Résumé

The self-splicing group II introns are bacterial and organellar ancestors of the nuclear spliceosome and retro-transposable elements of pharmacological and biotechnological importance. Integrating enzymatic, crystallographic, and simulation studies, we demonstrate how these introns recognize small molecules through their conserved active site. These RNA-binding small molecules selectively inhibit the two steps of splicing by adopting distinctive poses at different stages of catalysis, and by preventing crucial active site conformational changes that are essential for splicing progression. Our data exemplify the enormous power of RNA binders to mechanistically probe vital cellular pathways. Most importantly, by proving that the evolutionarily-conserved RNA core of splicing machines can recognize small molecules specifically, our work provides a solid basis for the rational design of splicing modulators not only against bacterial and organellar introns, but also against the human spliceosome, which is a validated drug target for the treatment of congenital diseases and cancers.

Identifiants

pubmed: 38898052
doi: 10.1038/s41467-024-48697-0
pii: 10.1038/s41467-024-48697-0
doi:

Substances chimiques

Small Molecule Libraries 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4980

Subventions

Organisme : Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
ID : PJA-20191209284
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-INSB-05-02
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-17-EURE-0003

Informations de copyright

© 2024. The Author(s).

Références

Chillón I., M. M. Self‐Splicing Group II Introns. Ribozymes. Principles, Methods, Applications, eds Mueller S., Masquida B., Winkler W. (Wiley-VCH Verlag GmbH) 1, 143-167 (2021).
Jiang, W. & Chen, L. Alternative splicing: Human disease and quantitative analysis from high-throughput sequencing. Comput Struct. Biotechnol. J. 19, 183–195 (2021).
pubmed: 33425250 doi: 10.1016/j.csbj.2020.12.009
Martinez-Abarca, F. & Toro, N. Group II introns in the bacterial world. Mol. Microbiol. 38, 917–926 (2000).
pubmed: 11123668 doi: 10.1046/j.1365-2958.2000.02197.x
Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17, 547–558 (2018).
pubmed: 29977051 pmcid: 6420209 doi: 10.1038/nrd.2018.93
Fedorova, O. et al. Small molecules that target group II introns are potent antifungal agents. Nat. Chem. Biol. 14, 1073–1078 (2018).
pubmed: 30323219 pmcid: 6239893 doi: 10.1038/s41589-018-0142-0
Naryshkin, N. A. et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345, 688–693 (2014).
Falese, J. P., Donlic, A. & Hargrove, A. E. Targeting RNA with small molecules: from fundamental principles towards the clinic. Chem. Soc. Rev. 50, 2224–2243 (2021).
pubmed: 33458725 pmcid: 8018613 doi: 10.1039/D0CS01261K
Manigrasso, J., Marcia, M. & De Vivo, M. Computer-aided design of RNA-targeted small molecules: A growing need in drug discovery. Chem 7, 1–24 (2021).
doi: 10.1016/j.chempr.2021.05.021
Marcia, M. & Pyle, A. M. Visualizing group II intron catalysis through the stages of splicing. Cell 151, 497–507 (2012).
pubmed: 23101623 pmcid: 3628766 doi: 10.1016/j.cell.2012.09.033
Marcia, M. & Pyle, A. M. Principles of ion recognition in RNA: insights from the group II intron structures. RNA 20, 516–527 (2014).
pubmed: 24570483 pmcid: 3964913 doi: 10.1261/rna.043414.113
Marcia, M., Manigrasso, J. & De Vivo, M. Finding the Ion in the RNA-Stack: Can Computational Models Accurately Predict Key Functional Elements in Large Macromolecular Complexes? J. Chem. Inf. Model 61, 2511–2515 (2021).
pubmed: 34133879 pmcid: 8278382 doi: 10.1021/acs.jcim.1c00572
Aupic, J., Borisek, J., Fica, S. M., Galej, W. P. & Magistrato, A. Monovalent metal ion binding promotes the first transesterification reaction in the spliceosome. Nat. Commun. 14, 8482 (2023).
pubmed: 38123540 pmcid: 10733407 doi: 10.1038/s41467-023-44174-2
Manigrasso, J. et al. Visualizing group II intron dynamics between the first and second steps of splicing. Nat. Commun. 11, 2837 (2020).
pubmed: 32503992 pmcid: 7275048 doi: 10.1038/s41467-020-16741-4
Marcia, M., Somarowthu, S. & Pyle, A. M. Now on display: a gallery of group II intron structures at different stages of catalysis. Mob. DNA 4, 14–26 (2013).
pubmed: 23634971 pmcid: 3669008 doi: 10.1186/1759-8753-4-14
Popovic, M. & Greenbaum, N. L. Role of helical constraints of the EBS1-IBS1 duplex of a group II intron on demarcation of the 5’ splice site. RNA 20, 24–35 (2014).
Credille, C. V. et al. Structure-Activity Relationships in Metal-Binding Pharmacophores for Influenza Endonuclease. J. Med Chem. 61, 10206–10217 (2018).
pubmed: 30351002 pmcid: 6249039 doi: 10.1021/acs.jmedchem.8b01363
Pearce, N. M. et al. A multi-crystal method for extracting obscured crystallographic states from conventionally uninterpretable electron density. Nat. Commun. 8, 15123 (2017).
pubmed: 28436492 pmcid: 5413968 doi: 10.1038/ncomms15123
Tiefenbrunn, T. et al. Crystallographic Fragment-Based Drug Discovery: Use of a Brominated Fragment Library Targeting HIV Protease. Chem. Biol. Drug Des. 83, 141–148 (2014).
pubmed: 23998903 doi: 10.1111/cbdd.12227
Cournia, Z., Allen, B. & Sherman, W. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations. J. Chem. Inf. Model 57, 2911–2937 (2017).
pubmed: 29243483 doi: 10.1021/acs.jcim.7b00564
Klimovich, P. V., Shirts, M. R. & Mobley, D. L. Guidelines for the analysis of free energy calculations. J. Comput. Aided Mol. Des. 29, 397–411 (2015).
pubmed: 25808134 pmcid: 4420631 doi: 10.1007/s10822-015-9840-9
Lee, S. C. & Abdel-Wahab, O. Therapeutic targeting of splicing in cancer. Nat. Med. 22, 976–986 (2016).
pubmed: 27603132 pmcid: 5644489 doi: 10.1038/nm.4165
Brodersen, D. E. et al. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103, 1143–1154 (2000).
pubmed: 11163189 doi: 10.1016/S0092-8674(00)00216-6
Moazed, D. & Noller, H. F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327, 389–394 (1987).
pubmed: 2953976 doi: 10.1038/327389a0
Wilson, D. N. The A-Z of bacterial translation inhibitors. Crit. Rev. Biochem. Mol. Biol. 44, 393–433 (2009).
pubmed: 19929179 doi: 10.3109/10409230903307311
Monachello, D., Lauraine, M., Gillot, S., Michel, F. & Costa, M. A new RNA-DNA interaction required for integration of group II intron retrotransposons into DNA targets. Nucleic Acids Res. 49, 12394–12410 (2021).
pubmed: 34791436 pmcid: 8643678 doi: 10.1093/nar/gkab1031
Belhocine, K., Mak, A. B. & Cousineau, B. Trans-splicing of the Ll.LtrB group II intron in Lactococcus lactis. Nucleic Acids Res. 35, 2257–2268 (2007).
pubmed: 17389638 pmcid: 1874635 doi: 10.1093/nar/gkl1146
Haack, D. B. et al. Cryo-EM Structures of a Group II Intron Reverse Splicing into DNA. Cell 178, 612–623.e612 (2019).
pubmed: 31348888 pmcid: 6662634 doi: 10.1016/j.cell.2019.06.035
Toor, N., Robart, A. R., Christianson, J. & Zimmerly, S. Self-splicing of a group IIC intron: 50 exon recognition and alternative 50 splicing events implicate the stem–loop motif of a transcriptional terminator. Nucleic Acids Res. 34, 6461–6471 (2006).
pubmed: 17130159 pmcid: 1702495 doi: 10.1093/nar/gkl820
Wiryaman, T. & Toor, N. Structure determination of group II introns. Methods 125, 10–15 (2017).
Ichiyanagi, K. et al. A bacterial group II intron favors retrotransposition into plasmid targets. Proc. Natl Acad. Sci. USA 100, 15742–15747 (2003).
pubmed: 14673083 pmcid: 307638 doi: 10.1073/pnas.2536659100
Partridge, S. R., Firth, N. K. S. & Jensenc, S. O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol Rev. 31, e00088–17 (2018).
pubmed: 30068738 pmcid: 6148190 doi: 10.1128/CMR.00088-17
Dai, L. & Zimmerly, S. Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behavior. Nucleic Acids Res. 30, 1091–1102 (2002).
pubmed: 11861899 pmcid: 101233 doi: 10.1093/nar/30.5.1091
Enyeart, P. J., Mohr, G., Ellington, A. D. & Lambowitz, A. M. Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mob. DNA 5, 2 (2014).
pubmed: 24410776 pmcid: 3898094 doi: 10.1186/1759-8753-5-2
Bayley, H., Gasparro, F. & Edelson, R. Photoactivatable Drugs. Trends Pharm. Sci. 8, 138–143 (1987).
doi: 10.1016/0165-6147(87)90183-0
Ellis-Davies, G. C. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat. Methods 4, 619–628 (2007).
pubmed: 17664946 pmcid: 4207253 doi: 10.1038/nmeth1072
Seiler, M. et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat. Med. 24, 497–504 (2018).
pubmed: 29457796 pmcid: 6730556 doi: 10.1038/nm.4493
Taylor, J. K., Zhang, Q. Q., Wyatt, J. R. & Dean, N. M. Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat. Biotechnol. 17, 1097–1100 (1999).
pubmed: 10545916 doi: 10.1038/15079
Genna, V., Colombo, M., De Vivo, M. & Marcia, M. Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes. Structure 26, 40–50 e42 (2018).
pubmed: 29225080 pmcid: 5758106 doi: 10.1016/j.str.2017.11.008
Genna, V., Marcia, M. & De Vivo, M. A Transient and Flexible Cation-pi Interaction Promotes Hydrolysis of Nucleic Acids in DNA and RNA Nucleases. J. Am. Chem. Soc. 141, 10770–10776 (2019).
pubmed: 31251587 doi: 10.1021/jacs.9b03663
Manigrasso, J., De Vivo, M. & Palermo, G. Controlled Trafficking of Multiple and Diverse Cations Prompts Nucleic Acid Hydrolysis. Acs Catal. 11, 8786–8797 (2021).
pubmed: 35145762 pmcid: 8827413 doi: 10.1021/acscatal.1c01825
Toor, N., Keating, K. S., Taylor, S. D. & Pyle, A. M. Crystal structure of a self-spliced group II intron. Science 320, 77–82 (2008).
pubmed: 18388288 pmcid: 4406475 doi: 10.1126/science.1153803
Toor, N. et al. Tertiary architecture of the Oceanobacillus iheyensis group II intron. RNA 16, 57–69 (2010).
Chillon, I. et al. Native Purification and Analysis of Long RNAs. Methods Enzymol. 558, 3–37 (2015).
pubmed: 26068736 pmcid: 4477701 doi: 10.1016/bs.mie.2015.01.008
Daniels, D. L., Michels, W. J. Jr. & Pyle, A. M. Two competing pathways for self-splicing by group II introns: a quantitative analysis of in vitro reaction rates and products. J. Mol. Biol. 256, 31–49 (1996).
pubmed: 8609612 doi: 10.1006/jmbi.1996.0066
Bowler, M. W. et al. MASSIF-1: a beamline dedicated to the fully automatic characterization and data collection from crystals of biological macromolecules. J. Synchrotron Radiat. 22, 1540–1547 (2015).
pubmed: 26524320 pmcid: 4629869 doi: 10.1107/S1600577515016604
McCarthy, A. A. et al. ID30B - a versatile beamline for macromolecular crystallography experiments at the ESRF. J. Synchrotron Radiat. 25, 1249–1260 (2018).
pubmed: 29979188 pmcid: 6038607 doi: 10.1107/S1600577518007166
Kabsch, W. Xds. Acta Crystallogr. 66, 125–132 (2010).
McCoy, A. J. et al. Phaser crystallographic software. J. Appl Crystallogr. 40, 658–674 (2007).
pubmed: 19461840 pmcid: 2483472 doi: 10.1107/S0021889807021206
Marcia, M. et al. Solving nucleic acid structures by molecular replacement: examples from group II intron studies. Acta Crystallogr. 69, 2174–2185 (2013).
Marcia, M. Using molecular replacement phasing to study the structure and function of RNA. Methods Mol. Biol. 1320, 233–257 (2016).
Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D. Biol. Crystallogr. 58, 1948–1954 (2002).
pubmed: 12393927 doi: 10.1107/S0907444902016657
Adams, P. D. et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchrotron Radiat. 11, 53–55 (2004).
pubmed: 14646133 doi: 10.1107/S0909049503024130
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. 66, 213–221 (2010).
Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D. Biol. Crystallogr. 67, 355–367 (2011).
pubmed: 21460454 pmcid: 3069751 doi: 10.1107/S0907444911001314
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).
pubmed: 15572765 doi: 10.1107/S0907444904019158
Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).
pubmed: 17452350 pmcid: 1933162 doi: 10.1093/nar/gkm216
Lu, C. et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 17, 4291–4300 (2021).
pubmed: 34096718 doi: 10.1021/acs.jctc.1c00302
Bochevarov, A. D., Watson, M. A., Greenwood, J. R. & Philipp, D. M. Multiconformation, Density Functional Theory-Based pK(a) Prediction in Application to Large, Flexible Organic Molecules with Diverse Functional Groups. J. Chem. Theory Comput. 12, 6001–6019 (2016).
pubmed: 27951674 doi: 10.1021/acs.jctc.6b00805
Perez, A. et al. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 92, 3817–3829 (2007).
pubmed: 17351000 pmcid: 1868997 doi: 10.1529/biophysj.106.097782
Zgarbova, M. et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 7, 2886–2902 (2011).
pubmed: 21921995 pmcid: 3171997 doi: 10.1021/ct200162x
Joung, I. S. & Cheatham, T. E. 3rd Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. J. Phys. Chem. B 113, 13279–13290 (2009).
pubmed: 19757835 pmcid: 2755304 doi: 10.1021/jp902584c
Panteva, M. T., Giambasu, G. M. & York, D. M. Force Field for Mg(2+), Mn(2+), Zn(2+), and Cd(2+) Ions That Have Balanced Interactions with Nucleic Acids. J. Phys. Chem. B 119, 15460–15470 (2015).
pubmed: 26583536 pmcid: 4762653 doi: 10.1021/acs.jpcb.5b10423
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 79, 926–935 (1983).
doi: 10.1063/1.445869
Turq, P., Lantelme, F. & Friedman, H. L. Brownian Dynamics - Its Application to Ionic-Solutions. J. Chem. Phys. 66, 3039–3044 (1977).
doi: 10.1063/1.434317
Salomon-Ferrer, R., Case, D. A. & Walker, R. C. An overview of the Amber biomolecular simulation package. Wires Comput Mol. Sci. 3, 198–210 (2013).
doi: 10.1002/wcms.1121
Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., Dinola, A. & Haak, J. R. Molecular-Dynamics with Coupling to an External Bath. J. Chem. Phys. 81, 3684–3690 (1984).
doi: 10.1063/1.448118
Jorgensen, W. L. Efficient drug lead discovery and optimization. Acc. Chem. Res. 42, 724–733 (2009).
pubmed: 19317443 pmcid: 2727934 doi: 10.1021/ar800236t
De Vivo, M., Masetti, M., Bottegoni, G. & Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery. J. Med. Chem. 59, 4035–4061 (2016).
pubmed: 26807648 doi: 10.1021/acs.jmedchem.5b01684
Mey, A. et al. Best Practices for Alchemical Free Energy Calculations [Article v1.0]. Living J. Comput. Mol. Sci. 2. https://doi.org/10.33011/livecoms.2.1.18378 (2020).
Hahn, D. F. et al. Best practices for constructing, preparing, and evaluating protein-ligand binding affinity benchmarks [Article v0.1]. Living J. Comput. Mol. Sci. 4, https://doi.org/10.33011/livecoms.4.1.1497 (2022).
Lee, T. S., Hu, Y., Sherborne, B., Guo, Z. & York, D. M. Toward Fast and Accurate Binding Affinity Prediction with pmemdGTI: An Efficient Implementation of GPU-Accelerated Thermodynamic Integration. J. Chem. Theory Comput. 13, 3077–3084 (2017).
pubmed: 28618232 pmcid: 5843186 doi: 10.1021/acs.jctc.7b00102
He, X. et al. Fast, Accurate, and Reliable Protocols for Routine Calculations of Protein-Ligand Binding Affinities in Drug Design Projects Using AMBER GPU-TI with ff14SB/GAFF. ACS Omega 5, 4611–4619 (2020).
pubmed: 32175507 pmcid: 7066661 doi: 10.1021/acsomega.9b04233
Wallace, J. A. & Shen, J. K. Charge-leveling and proper treatment of long-range electrostatics in all-atom molecular dynamics at constant pH. J Chem Phys 137. https://doi.org/10.1063/1.4766352 (2012).
Chen, Y. & Roux, B. Constant-pH Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulation Method. J. Chem. Theory Comput. 11, 3919–3931 (2015).
pubmed: 26300709 pmcid: 4535364 doi: 10.1021/acs.jctc.5b00261
Lee, T. S. et al. Improved Alchemical Free Energy Calculations with Optimized Smoothstep Softcore Potentials. J. Chem. Theory Comput. 16, 5512–5525 (2020).
pubmed: 32672455 pmcid: 7494069 doi: 10.1021/acs.jctc.0c00237
Karplus, M. Development of multiscale models for complex chemical systems: from H+H(2) to biomolecules (Nobel Lecture). Angew. Chem. 53, 9992–10005 (2014).
doi: 10.1002/anie.201403924
Levitt, M. Birth and future of multiscale modeling for macromolecular systems (Nobel Lecture). Angew. Chem. 53, 10006–10018 (2014).
doi: 10.1002/anie.201403691
Warshel, A. Multiscale modeling of biological functions: from enzymes to molecular machines (Nobel Lecture). Angew. Chem. 53, 10020–10031 (2014).
doi: 10.1002/anie.201403689
Cruzeiro, V. W. D., Manathunga, M., Merz, K. M. Jr. & Gotz, A. W. Open-Source Multi-GPU-Accelerated QM/MM Simulations with AMBER and QUICK. J. Chem. Inf. Model 61, 2109–2115 (2021).
pubmed: 33913331 doi: 10.1021/acs.jcim.1c00169
Manathunga, M., Miao, Y., Mu, D., Gotz, A. W. & Merz, K. M. Jr. Parallel Implementation of Density Functional Theory Methods in the Quantum Interaction Computational Kernel Program. J. Chem. Theory Comput. 16, 4315–4326 (2020).
pubmed: 32511916 doi: 10.1021/acs.jctc.0c00290
Case, D. A. et al. AmberTools. J. Chem. Inf. Model 63, 6183–6191 (2023).
pubmed: 37805934 pmcid: 10598796 doi: 10.1021/acs.jcim.3c01153
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
doi: 10.1063/1.464913
Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens Matter 37, 785–789 (1988).
pubmed: 9944570 doi: 10.1103/PhysRevB.37.785
Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chim. Acta 28, 213–222 (1973).
doi: 10.1007/BF00533485
Hehre, W. J., Ditchfield, R. & Pople, J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 56, 2257–2261 (1972).
doi: 10.1063/1.1677527

Auteurs

Ilaria Silvestri (I)

Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
Institute of Crystallography, National Research Council, Via Vivaldi 43, 81100, Caserta, Italy.

Jacopo Manigrasso (J)

Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.

Alessandro Andreani (A)

Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.

Nicoletta Brindani (N)

Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.

Caroline Mas (C)

Univ. Grenoble Alpes, CNRS, CEA, EMBL, ISBG, F-38000, Grenoble, France.

Jean-Baptiste Reiser (JB)

Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France.

Pietro Vidossich (P)

Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.

Gianfranco Martino (G)

Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.

Andrew A McCarthy (AA)

European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.

Marco De Vivo (M)

Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy. marco.devivo@iit.it.

Marco Marcia (M)

European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France. mmarcia@embl.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH