Multi-genome comparisons reveal gain-and-loss evolution of anti-Mullerian hormone receptor type 2 as a candidate master sex-determining gene in Percidae.
Genome
Perches
Pikeperches
Sex chromosomes
Sex-determination
Journal
BMC biology
ISSN: 1741-7007
Titre abrégé: BMC Biol
Pays: England
ID NLM: 101190720
Informations de publication
Date de publication:
26 Jun 2024
26 Jun 2024
Historique:
received:
19
01
2024
accepted:
06
06
2024
medline:
27
6
2024
pubmed:
27
6
2024
entrez:
26
6
2024
Statut:
epublish
Résumé
The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii, and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex-determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplicates (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been likely lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome 18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variations (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex-determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in the testis than in the ovary. Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.
Sections du résumé
BACKGROUND
BACKGROUND
The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii, and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems.
RESULTS
RESULTS
We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex-determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplicates (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been likely lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome 18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variations (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex-determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in the testis than in the ovary.
CONCLUSIONS
CONCLUSIONS
Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.
Identifiants
pubmed: 38926709
doi: 10.1186/s12915-024-01935-9
pii: 10.1186/s12915-024-01935-9
doi:
Substances chimiques
anti-Mullerian hormone receptor
0
Receptors, Peptide
0
Receptors, Transforming Growth Factor beta
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
141Subventions
Organisme : Agence Nationale de la Recherche
ID : ANR-13-ISV7-0005
Organisme : Agence Nationale de la Recherche
ID : ANR-10-INBS-09
Organisme : Deutsche Forschungsgemeinschaft
ID : KU 3596/1-1
Organisme : Deutsche Forschungsgemeinschaft
ID : project number: 324050651
Informations de copyright
© 2024. The Author(s).
Références
Stepien CA, Haponski AE. Taxonomy, distribution, and evolution of the Percidae. In: Kestemont P, Dabrowski K, Summerfelt RC, editors. Biology and culture of percid fishes: principles and practices. Dordrecht: Springer, Netherlands; 2015. p. 3–60.
doi: 10.1007/978-94-017-7227-3_1
Hermelink B, Wuertz S, Trubiroha A, Rennert B, Kloas W, Schulz C. Influence of temperature on puberty and maturation of pikeperch. Sander lucioperca Gen Comp Endocrinol. 2011;172:282–92.
pubmed: 21439285
doi: 10.1016/j.ygcen.2011.03.013
Schaefer FJ, Overton JL, Kloas W, Wuertz S. Length rather than year-round spawning, affects reproductive performance of RAS-reared F-generation pikeperch, Sander lucioperca (Linnaeus, 1758) - insights from practice. J Appl Ichthyol. 2018;34:617–21.
doi: 10.1111/jai.13628
Policar T, Schaefer FJ, Panana E, Meyer S, Teerlinck S, Toner D, et al. Recent progress in European percid fish culture production technology-tackling bottlenecks (vol 27, pg 4, 2019). Aquacult Int. 2019;27:1175–1175.
doi: 10.1007/s10499-019-00457-4
Malison JA, Kayes TB, Best CD, Amundson CH, Wentworth BC. Sexual differentiation and use of hormones to control sex in yellow perch (Perca flavescens). Can J Fish Aquat Sci. 1986;43:26–35.
doi: 10.1139/f86-004
Melard C, Kestemont P, Grignard JC. Intensive culture of juvenile and adult Eurasian perch (P-fluviatilis): effect of major biotic and abiotic factors on growth. J Appl Ichthyol. 1996;12:175–80.
doi: 10.1111/j.1439-0426.1996.tb00085.x
Rougeot C, Jacobs B, Kestemont P, Melard C. Sex control and sex determinism study in Eurasian perch, Perca fluviatilis, by use of hormonally sex-reversed male breeders. Aquaculture. 2002;211:81–9.
doi: 10.1016/S0044-8486(01)00893-6
Rougeot C, Ngingo JV, Gillet L, Vanderplasschen A, Melard C. Gynogenesis induction and sex determination in the Eurasian perch. Perca fluviatilis Aquaculture. 2005;243:411–5.
doi: 10.1016/j.aquaculture.2004.11.004
Feron R, Zahm M, Cabau C, Klopp C, Roques C, Bouchez O, et al. Characterization of a Y-specific duplication/insertion of the anti-Mullerian hormone type II receptor gene based on a chromosome-scale genome assembly of yellow perch. Perca flavescens Mol Ecol Resour. 2020;20:531–43.
pubmed: 31903688
doi: 10.1111/1755-0998.13133
Pan Q, Kay T, Depince A, Adolfi M, Schartl M, Guiguen Y, et al. Evolution of master sex determiners: TGF-beta signalling pathways at regulatory crossroads. Philos Trans R Soc Lond B Biol Sci. 2021;376:20200091.
pubmed: 34247498
pmcid: 8273507
doi: 10.1098/rstb.2020.0091
Pan Q, Feron R, Jouanno E, Darras H, Herpin A, Koop B, et al. The rise and fall of the ancient northern pike master sex-determining gene. Life. 2021;10:e62858.
Pan Q, Feron R, Yano A, Guyomard R, Jouanno E, Vigouroux E, et al. Identification of the master sex determining gene in Northern pike (Esox lucius) reveals restricted sex chromosome differentiation. PLOS Genetics. 2019;15: e1008013.
pubmed: 31437150
pmcid: 6726246
doi: 10.1371/journal.pgen.1008013
Li M, Sun Y, Zhao J, Shi H, Zeng S, Ye K, et al. A tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia. Oreochromis niloticus PLOS Genetics. 2015;11: e1005678.
pubmed: 26588702
doi: 10.1371/journal.pgen.1005678
Holborn MK, Einfeldt AL, Kess T, Duffy SJ, Messmer AM, Langille BL, et al. Reference genome of lumpfish Cyclopterus lumpus Linnaeus provides evidence of male heterogametic sex determination through the AMH pathway. Mol Ecol Resour. 2022. https://doi.org/10.1111/1755-0998.13565 .
doi: 10.1111/1755-0998.13565
pubmed: 34859595
Song W, Xie Y, Sun M, Li X, Fitzpatrick CK, Vaux F, et al. A duplicated amh is the master sex-determining gene for Sebastes rockfish in the Northwest Pacific. Open Biol. 2021;11: 210063.
pubmed: 34255977
pmcid: 8277470
doi: 10.1098/rsob.210063
Rondeau EB, Laurie CV, Johnson SC, Koop BF. A PCR assay detects a male-specific duplicated copy of anti-Mullerian hormone (amh) in the lingcod (Ophiodon elongatus). BMC Res Notes. 2016;9:230.
pubmed: 27103037
pmcid: 4840878
doi: 10.1186/s13104-016-2030-6
Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, et al. A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci USA. 2012;109:2955–9.
pubmed: 22323585
pmcid: 3286941
doi: 10.1073/pnas.1018392109
Wen M, Pan Q, Jouanno E, Montfort J, Zahm M, Cabau C, et al. An ancient truncated duplication of the anti-Müllerian hormone receptor type 2 gene is a potential conserved master sex determinant in the Pangasiidae catfish family. Mol Ecol Resour. 2022. https://doi.org/10.1111/1755-0998.13620 .
doi: 10.1111/1755-0998.13620
pubmed: 35429227
pmcid: 9555307
Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, et al. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet. 2012;8: e1002798.
pubmed: 22807687
pmcid: 3395601
doi: 10.1371/journal.pgen.1002798
Nakamoto M, Uchino T, Koshimizu E, Kuchiishi Y, Sekiguchi R, Wang L, et al. A Y-linked anti-Müllerian hormone type-II receptor is the sex-determining gene in ayu. Plecoglossus altivelis PLoS Genet. 2021;17: e1009705.
pubmed: 34437539
doi: 10.1371/journal.pgen.1009705
Qu M, Liu Y, Zhang Y, Wan S, Ravi V, Qin G, et al. Seadragon genome analysis provides insights into its phenotype and sex determination locus. Sci Adv. 2021;7:eabg5196.
pubmed: 34407945
pmcid: 8373133
doi: 10.1126/sciadv.abg5196
Nguinkal JA, Brunner RM, Verleih M, Rebl A, de los Rios-Perez L, Schafer N, et al. The first highly contiguous genome assembly of pikeperch (Sander lucioperca), an emerging aquaculture species in Europe. Genes-Basel. 2019;10(9):708. https://doi.org/10.3390/genes10090708 .
Malmstrom M, Matschiner M, Torresen OK, Jakobsen KS, Jentoft S. Whole genome sequencing data and de novo draft assemblies for 66 teleost species. Sci Data. 2017;4:160132.
pubmed: 28094797
pmcid: 5240625
doi: 10.1038/sdata.2016.132
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
pubmed: 26059717
doi: 10.1093/bioinformatics/btv351
Kuhl H, Li L, Wuertz S, Stock M, Liang XF, Klopp C. CSA: a high-throughput chromosome-scale assembly pipeline for vertebrate genomes. Gigascience. 2020;9:giaa034.
pubmed: 32449778
pmcid: 7247394
doi: 10.1093/gigascience/giaa034
Braun EL, Kimball RT. Data types and the phylogeny of Neoaves. Birds. 2021;2:1–22.
doi: 10.3390/birds2010001
Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320–31.
pubmed: 25504713
pmcid: 4405904
doi: 10.1126/science.1253451
Kuhl H, Frankl-Vilches C, Bakker A, Mayr G, Nikolaus G, Boerno ST, et al. An unbiased molecular approach using 3’-UTRs resolves the avian family-level tree of life. Mol Biol Evol. 2021;38:108–27.
pubmed: 32781465
doi: 10.1093/molbev/msaa191
Heldin C-H, Moustakas A. Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol. 2016;8: a022053.
pubmed: 27481709
pmcid: 4968163
doi: 10.1101/cshperspect.a022053
Ozerov MY, Ahmad F, Gross R, Pukk L, Kahar S, Kisand V, et al. Highly continuous genome assembly of Eurasian perch (Perca fluviatilis) using linked-read sequencing. G3: Genes, Genomes. Genetics. 2018;8:3737–43.
Berv JS, Field DJ. Genomic signature of an avian Lilliput Effect across the K-Pg extinction. Syst Biol. 2018;67:1–13.
pubmed: 28973546
doi: 10.1093/sysbio/syx064
Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD, et al. Origins and functional evolution of Y chromosomes across mammals. Nature. 2014;508:488–93.
pubmed: 24759410
doi: 10.1038/nature13151
Pinto BJ, Gamble T, Smith CH, Wilson MA. A lizard is never late: squamate genomics as a recent catalyst for understanding sex chromosome and microchromosome evolution. J Hered. 2023;114:445–58.
pubmed: 37018459
pmcid: 10445521
doi: 10.1093/jhered/esad023
Frith MC, Kawaguchi R. Split-alignment of genomes finds orthologies more accurately. Genome Biol. 2015;16:106.
pubmed: 25994148
pmcid: 4464727
doi: 10.1186/s13059-015-0670-9
Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 2004;14:708–15.
pubmed: 15060014
pmcid: 383317
doi: 10.1101/gr.1933104
Hart KN, Stocker WA, Nagykery NG, Walton KL, Harrison CA, Donahoe PK, et al. Structure of AMH bound to AMHR2 provides insight into a unique signaling pair in the TGF-β family. Proc Natl Acad Sci U S A. 2021;118: e2104809118.
pubmed: 34155118
pmcid: 8256043
doi: 10.1073/pnas.2104809118
Rafati N, Chen J, Herpin A, Pettersson ME, Han F, Feng C, et al. Reconstruction of the birth of a male sex chromosome present in Atlantic herring. PNAS. 2020;117:24359–68.
pubmed: 32938798
pmcid: 7533707
doi: 10.1073/pnas.2009925117
M M, J T, F H, R M, J A. Human and zebrafish hydroxysteroid dehydrogenase like 1 (HSDL1) proteins are inactive enzymes but conserved among species. Chemico-biological interactions. 2009;178.
Xiao L, Guo Y, Wang D, Zhao M, Hou X, Li S, et al. Beta-hydroxysteroid dehydrogenase genes in orange-spotted grouper (Epinephelus coioides): genome-wide identification and expression analysis during sex reversal. Front Genet. 2020;11:161.
pubmed: 32194632
pmcid: 7064643
doi: 10.3389/fgene.2020.00161
Fan B, Xie D, Li Y, Wang X, Qi X, Li S, et al. A single intronic single nucleotide polymorphism in splicing site of steroidogenic enzyme hsd17b1 is associated with phenotypic sex in oyster pompano. Trachinotus anak Proc Biol Sci. 2021;288:20212245.
pubmed: 34784765
Koyama T, Nakamoto M, Morishima K, Yamashita R, Yamashita T, Sasaki K, et al. A SNP in a steroidogenic enzyme is associated with phenotypic sex in Seriola fishes. Current Biology. 2019;29:1901–1909.e8.
pubmed: 31130458
doi: 10.1016/j.cub.2019.04.069
Purcell CM, Seetharam AS, Snodgrass O, Ortega-García S, Hyde JR, Severin AJ. Insights into teleost sex determination from the Seriola dorsalis genome assembly. BMC Genomics. 2018;19:31.
pubmed: 29310588
pmcid: 5759298
doi: 10.1186/s12864-017-4403-1
Ko HW, Norman RX, Tran J, Fuller KP, Fukuda M, Eggenschwiler JT. Broad-minded links cell cycle-related kinase to cilia assembly and Hedgehog signal transduction. Developmental Cell. 2010;18:237–47.
pubmed: 20159594
pmcid: 2830714
doi: 10.1016/j.devcel.2009.12.014
Huang C-CJ, Yao HH-C. Diverse functions of Hedgehog signaling in formation and physiology of steroidogenic organs. Mol Reprod Dev. 2010;77:489–96.
Guiguen Y, Fostier A, Piferrer F, Chang C-F. Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol. 2010;165:352–66.
pubmed: 19289125
doi: 10.1016/j.ygcen.2009.03.002
Baroiller JF, Guiguen Y. Endocrine and environmental aspects of sex differentiation in gonochoristic fish. EXS. 2001;:177–201.
Schaerlinger B. Model organism or animal sample from Perca fluviatilis. NCBI https://www.ncbi.nlm.nih.gov/biosample/12071746 (2019).
Stock M, Timirkhanov S. Model organism or animal sample from Perca schrenkii. NCBI https://www.ncbi.nlm.nih.gov/biosample/15143703 (2020).
Foissac S, Djebali S, Munyard K, Vialaneix N, Rau A, Muret K, et al. Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biology. 2019;17:108.
pubmed: 31884969
pmcid: 6936065
doi: 10.1186/s12915-019-0726-5
Auburn University. Raw read of the assembled draft genome for walleye. NCBI https://www.ncbi.nlm.nih.gov/sra/SRR9711286 (2019).
Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom. 2017;3: e000132.
pubmed: 29177090
pmcid: 5695209
Liu H, Wu S, Li A, Ruan J. SMARTdenovo: a de novo assembler using long noisy reads. Gigabyte. 2021;2021:gigabyte15. https://doi.org/10.46471/gigabyte.15 .
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.
pubmed: 29750242
pmcid: 6137996
doi: 10.1093/bioinformatics/bty191
Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–46.
pubmed: 28100585
pmcid: 5411768
doi: 10.1101/gr.214270.116
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:13033997 [q-bio]. 2013.
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9: e112963.
pubmed: 25409509
pmcid: 4237348
doi: 10.1371/journal.pone.0112963
Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3:95–8.
pubmed: 27467249
pmcid: 5846465
doi: 10.1016/j.cels.2016.07.002
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–5.
pubmed: 28336562
pmcid: 5635820
doi: 10.1126/science.aal3327
Robinson JT, Turner D, Durand NC, Thorvaldsdottir H, Mesirov JP, Aiden EL. Juicebox.js provides a cloud-based visualization system for Hi-C data. Cell Syst. 2018;6:256-+.
Xu GC, Xu TJ, Zhu R, Zhang Y, Li SQ, Wang HW, et al. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly. Gigascience. 2019;8:giy157.
pubmed: 30576505
doi: 10.1093/gigascience/giy157
Garrison E MG. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:12073907 [q-bioGN]. 2012.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.
pubmed: 22495754
doi: 10.1093/bioinformatics/bts174
Feron R, Morvezen R, Bestin A, Haffray P, Klopp C, Zahm M, et al. Genome assembly PFLA_1.0. NCBI https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_004354835.1 (2019).
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–6.
pubmed: 30936562
doi: 10.1038/s41587-019-0072-8
Iwata H, Gotoh O. Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features. Nucleic Acids Res. 2012;40:e161.
pubmed: 22848105
pmcid: 3488211
doi: 10.1093/nar/gks708
Kuhn RM, Haussler D, Kent WJ. The UCSC genome browser and associated tools. Brief Bioinform. 2013;14:144–61.
pubmed: 22908213
doi: 10.1093/bib/bbs038
Kent WJ. BLAT - the BLAST-like alignment tool. Genome Res. 2002;12:656–64.
pubmed: 11932250
pmcid: 187518
He S, Li L, Lv LY, Cai WJ, Dou YQ, Li J, et al. Mandarin fish (Sinipercidae) genomes provide insights into innate predatory feeding. Commun Biol. 2020;3.
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5.
pubmed: 31070718
pmcid: 6821337
doi: 10.1093/bioinformatics/btz305
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.
pubmed: 32011700
pmcid: 7182206
doi: 10.1093/molbev/msaa015
Moran RL, Catchen JM, Fuller RC. Genome assembly UIUC_Espe_1.0. NCBI https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_008692095.1/ (2019).
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
pubmed: 17483113
doi: 10.1093/molbev/msm088
Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics. 2011;188:799–808.
pubmed: 21828280
pmcid: 3176089
doi: 10.1534/genetics.111.127324
Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. Stacks: building and genotyping loci de novo from short-read sequences. G3 (Bethesda). 2011;1:171–82.
Feron R, Pan Q, Wen M, Imarazene B, Jouanno E, Anderson J, et al. RADSex: a computational workflow to study sex determination using restriction site-associated DNA sequencing data. Mol Ecol Resour. 2021;21:1715–31.
pubmed: 33590960
pmcid: 8589568
doi: 10.1111/1755-0998.13360
Wen M, Pan Q, Larson W, Eché C, Guiguen Y. Characterization of the sex determining region of channel catfish (Ictalurus punctatus) and development of a sex-genotyping test. Gene. 2023;850: 146933.
pubmed: 36191824
doi: 10.1016/j.gene.2022.146933
Jasonowicz AJ, Simeon A, Zahm M, Cabau C, Klopp C, Roques C, et al. Generation of a chromosome-level genome assembly for Pacific halibut (Hippoglossus stenolepis) and characterization of its sex-determining genomic region. Mol Ecol Resour. 2022;22:2685–700.
pubmed: 35569134
pmcid: 9541706
doi: 10.1111/1755-0998.13641
Smith SM, Maughan PJ. SNP genotyping using KASPar assays. Methods Mol Biol. 2015;1245:243–56.
pubmed: 25373762
doi: 10.1007/978-1-4939-1966-6_18
Pasquier J, Cabau C, Nguyen T, Jouanno E, Severac D, Braasch I, et al. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics. 2016;17:368.
pubmed: 27189481
pmcid: 4870732
doi: 10.1186/s12864-016-2709-z
Bobe J. Perca fluviatilis testis Transcriptome. NCBI https://www.ncbi.nlm.nih.gov/sra/SRX10811604 (2022).
Bobe J. Perca fluviatilis ovary transcriptome. NCBI https://www.ncbi.nlm.nih.gov/sra/SRX10811603 (2022).
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.
pubmed: 25751142
pmcid: 4655817
doi: 10.1038/nmeth.3317
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.
pubmed: 25690850
pmcid: 4643835
doi: 10.1038/nbt.3122
Roques C, Zahm M, Klopp C, Bouchez O, Donnadieu C, Kuhl H, et al. Perca fluviatilis genome sequencing and assembly. NCBI https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_010015445.1/ (2020).
Kuhl H, Stock M. Perca schrenkii isolate:PSM8 genome sequencing and assembly. NCBI https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_025617405.1/ (2022).
Kuhl H, Euclide PT. P. Sander vitreus isolate:19-12246 genome sequencing and assembly. NCBI https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_031162955.1/ (2023).