TiO
TiO2 nanotubes
anodization
local drug delivery system
oxide nanotubes
Journal
Journal of biomedical materials research. Part B, Applied biomaterials
ISSN: 1552-4981
Titre abrégé: J Biomed Mater Res B Appl Biomater
Pays: United States
ID NLM: 101234238
Informations de publication
Date de publication:
Jul 2024
Jul 2024
Historique:
revised:
02
05
2024
received:
06
02
2024
accepted:
17
06
2024
medline:
1
7
2024
pubmed:
1
7
2024
entrez:
1
7
2024
Statut:
ppublish
Résumé
In this study, we evaluated the drug release behavior of diameter customized TiO
Substances chimiques
Titanium
D1JT611TNE
titanium dioxide
15FIX9V2JP
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e35445Informations de copyright
© 2024 The Author(s). Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals LLC.
Références
Brånemark PI, Hansson BO, Adell R, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10‐year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1‐132.
Brånemark PI. Osseointegration and its experimental background. J Prosthet Dent. 1983;50:399‐410.
Liu H, Webster TJ. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials. 2007;28:354‐369.
Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA. Titania nanotubes: a novel platform for drug‐eluting coatings for medical implants? Small. 2007;3:1878‐1881.
Tran PA, Sarin L, Hurt RH, Webster TJ. Opportunities for nanotechnology‐enabled bioactive bone implants. J Mater Chem. 2009;19:2653‐2659.
Losic D, Aw MS, Santos A, Gulati K, Bariana M. Titania nanotube arrays for local drug delivery: recent advances and perspectives. Expert Opin Drug Deliv. 2015;12:103‐127.
Ju E, Li Z, Liu Z, Ren J, Qu X. Near‐infrared light‐triggered drug‐delivery vehicle for mitochondria‐targeted chemo‐photothermal therapy. ACS Appl Mat Interfaces. 2014;6:4364‐4370.
Camp ER, Wang C, Little EC, et al. Transferrin receptor targeting nanomedicine delivering wild‐type p53 gene sensitizes pancreatic cancer to gemcitabine therapy. Cancer Gene Ther. 2013;20:222‐228.
Torchilin VP. PEG‐based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev. 2002;54:235‐252.
Gao Y, Li Z, Xie X, et al. Dendrimeric anticancer prodrugs for targeted delivery of ursolic acid to folate receptorexpressing cancer cells: synthesis and biological evaluation. Eur J Pharm Sci. 2015;70:55‐63.
Wang W, Wu Z, Lin X, Si T, He Q. Gold‐nanoshell‐functionalized polymer nanoswimmer for photomechanical poration of single‐cell membrane. J Am Chem Soc. 2019;141:6601‐6608.
Li J, Ávila BE‐FD, Gao W, Zhang L, Wang J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Robotics. 2017;2:eaam6431.
Zhang D, Liu S, Guan J, Mou F. “Motile‐targeting” drug delivery platforms based on micro/nanorobots for tumor therapy. Front Bioeng Biotechnol. 2022;10:1002171.
Lyndon JA, Boyd BJ, Birbilis N. Metallic implant drug/device combinations for controlled drug release in orthopaedic applications. J Control Release. 2014;179:63‐75.
Ferraris S, Venturello A, Miola M, Cochis A, Rimondini L, Spriano S. Antibacterial and bioactive nanostructured titanium surfaces for bone integration. Appl Surf Sci. 2014;311:279‐291.
Assefpour‐Dezfuly M, Vlachos C, Andrews EH. Oxide morphology and adhesive bonding on titanium surfaces. J Mater Sci. 1984;19:3626‐3639.
Zwilling V, Aucouturier M, Darque‐Ceretti E. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim Acta. 1999;45:921‐929.
Macák JM, Tsuchiya H, Schmuki P. High‐aspect‐ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed. 2005;44:2100‐2102.
Macák JM, Tsuchiya H, Ghicov A, et al. TiO2 nanotubes: self‐organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci. 2007;11:3‐18.
Macák JM, Schmuki P. Anodic growth of self‐organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim Acta. 2006;52:1258‐1264.
Albu SP, Kim D, Schmuki P. Growth of aligned TiO2 bamboo‐type nanotubes and highly ordered nanolace. Angew Chem Int Ed. 2008;47:1916‐1919.
Bauer S, Kleber S, Schmuki P. TiO2 nanotubes: tailoring the geometry in H3PO4/HF electrolytes. Electrochem Comm. 2006;8:1321‐1325.
Gulati K, Aw MS, Findlay D, Losic D. Local drug delivery to the bone by drug‐releasing implants: perspectives of nano‐engineered titania nanotube arrays. Ther Deliv. 2012;3:857‐873.
Peng L, Mendelsohn AD, LaTempa TJ, Yoriya S, Grimes CA, Desai TA. Long‐term small molecule and protein elution from TiO2 nanotubes. Nano Lett. 2009;9:1932‐1936.
Yang L, Sheldon BW, Webster TJ. Nanophase ceramics for improved drug delivery: current opportunities and challenges. Am Ceram Soc Bull. 2010;89:24‐32.
Popat KC, Eltgroth M, Latempa TJ, Grimes CA, Desai TA. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic‐loaded titania nanotubes. Biomaterials. 2007;28:4880‐4888.
Moon SH, Lee SJ, Park IS, et al. Bioactivity of Ti‐6Al‐4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer. J Biomed Mater Res B Appl Biomater. 2012;100:2053‐2059.
Zhang H, Sun Y, Tian A, et al. Improved antibacterial activity and biocompatibility on vancomycin‐loaded TiO2 nanotubes: in vivo and in vitro studies. Int J Nanomedicine. 2013;8:4379‐4389.
Moseke C, Hage F, Vorndran E, Gbureck U. TiO2 nanotube arrays deposited on Ti substrate by anodic oxidation and their potential as a long‐term drug delivery system for antimicrobial agents. Appl Surf Sci. 2012;258:5399‐5404.
Hamlekhan A, Sinha‐Ray S, Takoudis C, et al. Fabrication of drug eluting implants: study of drug release mechanism from titanium dioxide nanotubes. J Phys D Appl Phys. 2015;48:275401.
Song YY, Schmidt‐Stein F, Bauer S, Schmuki P. Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J Am Chem Soc. 2009;131:4230‐4232.
Vasilev K, Poh Z, Kant K, Chan J, Michelmore A, Losic D. Tailoring the surface functionalities of titania nanotube arrays. Biomaterials. 2010;31:532‐540.
Mandal SS, Jose D, Bhattacharyya AJ. Role of surface chemistry in modulating drug release kinetics in titania nanotubes. Mater Chem Phys. 2014;147:247‐253.
Gulati K, Ramakrishnan S, Aw MS, Atkins GJ, Findlay DM, Losic D. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater. 2012;8:449‐456.
Lee JH, Moon SK, Kim KM, Kim KN. Modification of TiO2 nanotube surfaces by electro‐spray deposition of amoxicillin combined with PLGA for bactericidal effects at surgical implantation sites. Acta Odontol Scand. 2013;71:168‐174.
Jia H, Kerr LL. Sustained ibuprofen release using composite poly(lactic‐co‐glycolic acid)/titanium dioxide nanotubes from Ti implant surface. J Pharm Sci. 2013;102:2341‐2348.
Della Fara G, Markovics A, Radice S, et al. Electrophoretic deposition of gentamicin and chitosan into titanium nanotubes to target periprosthetic joint infection. J Biomed Mater Res B Appl Biomater. 2023;111:1697‐1704.
Asadi S, Mortezagholi B, Hadizadeh A, et al. Ciprofloxacin‐loaded titanium nanotubes coated with chitosan: a promising formulation with sustained release and enhanced antibacterial properties. Pharmaceutics. 2022;14:1359.
Aw MS, Losic D. Ultrasound enhanced release of therapeutics from drug‐releasing implants based on titania nanotube arrays. Int J Pharm. 2013;443:154‐162.
Bariana M, Aw MS, Moore E, Voelcker NH, Losic D. Radiofrequency‐triggered release for on‐demand delivery of therapeutics from titania nanotube drug‐eluting implants. Nanomedicine. 2014;9:1263‐1275.
Aw MS, Addai‐Mensah J, Losic D. Magnetic‐responsive delivery of drug‐carriers using titania nanotube arrays. J Mater Chem. 2012;22:6561‐6563.
Hasanzadeh Kafshgari M, Kah D, Mazare A, et al. Anodic titanium dioxide nanotubes for magnetically guided therapeutic delivery. Sci Rep. 2019;9:13439.
Wang K, Jin H, Song Q, Huo J, Zhang J, Li P. Titanium dioxide nanotubes as drug carriers for infection control and osteogenesis of bone implants. Drug Deliv Transl Res. 2021;11:1456‐1474.
De Santo I, Sanguigno L, Causa F, Monetta T, Netti PA. Exploring doxorubicin localization in eluting TiO2 nanotube arrays through fluorescence correlation spectroscopy analysis. Analyst. 2012;137:5076‐5081.
Pawlik A, Jarosz M, Syrek K, Sulka GD. Co‐delivery of ibuprofen and gentamicin from nanoporous anodic titanium dioxide layers. Colloids Surf B Biointerfaces. 2017;152:95‐102.
Miyabe S, Suehiro T, Fujinaga Y, Tsuchiya H, Hiromoto S, Fujimoto S. Cell activity on type 316L stainless steel with self‐organized nanopores formed by anodic polarization. Mater Trans. 2016;57:2065‐2071.
Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 2007;7:1686‐1691.
Park J, Bauer S, Schlegel KA, Neukam FW, von der Mark K, Schmuki P. TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation. Small. 2009;5:666‐671.
Chen B, Lu K. Hierarchically branched titania nanotubes with tailored diameters and branch numbers. Langmuir. 2012;28:2937‐2943.
Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA. A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells. 2006;90:2011‐2075.
Gulati K, Kogawa M, Prideaux M, Findlay DM, Atkins GJ, Losic D. Drug‐releasing nano‐engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability. Mater Sci Eng C Mater Biol Appl. 2016;69:831‐840.
Byrne RS, Deasy PB. Use of commercial porous ceramic particles for sustained drug delivery. Int J Pharm. 2002;246:61‐73.
Soltani B, Nabipour H, Ahmadi Nasab N. Fabrication, controlled release, and kinetic studies of indomethacin—layered zinc hydroxide nanohybrid and its effect on the viability of HFFF2. J Disper Sci Technol. 2018;39:1200‐1207.
Tsuchiya H, Macák JM, Andrei G, et al. Nanotube oxide coating on Ti–29Nb–13Ta–4.6Zr alloy prepared by self‐organizing anodization. Electrochim Acta. 2006;52:94‐101.
Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of potassium chloride release from compressed, hydrophilic, polymeric matrices: effect of entrapped air. J Pharm Sci. 1983;72:1189‐1191.
Mani G, Macias CE, Feldman MD, Marton D, Oh S, Agrawal CM. Delivery of paclitaxel from cobalt–chromium alloy surfaces without polymeric carriers. Biomaterials. 2010;31:5372‐5384.