Chromosomal abnormalities detected by chromosomal microarray analysis and pregnancy outcomes of 4211 fetuses with high-risk prenatal indications.
Chromosomal microarray analysis
Copy number variations
Pregnancy outcomes
Prenatal diagnosis
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
10 Jul 2024
10 Jul 2024
Historique:
received:
27
12
2023
accepted:
08
07
2024
medline:
11
7
2024
pubmed:
11
7
2024
entrez:
10
7
2024
Statut:
epublish
Résumé
With the gradual liberalization of the three-child policy and the development of assisted reproductive technology in China, the number of women with high-risk pregnancies is gradually increasing. In this study, 4211 fetuses who underwent chromosomal microarray analysis (CMA) with high-risk prenatal indications were analysed. The results showed that the overall prenatal detection rate of CMA was 11.4% (480/4211), with detection rates of 5.82% (245/4211) for abnormal chromosome numbers and 5.58% (235/4211) for copy number variants. Additionally, the detection rates of clinically significant copy number variants were 3.78% (159/4211) and 1.8% (76/4211) for variants of uncertain significance. The detection rates of fetal chromosomal abnormalities were 6.42% (30/467) for pregnant women with advanced maternal age (AMA), 6.01% (50/832) for high-risk maternal serum screening (MSS) results, 39.09% (224/573) with abnormal non-invasive prenatal testing (NIPT) results, 9.21% (127/1379) with abnormal ultrasound results, and 5.1% (49/960) for other indications. Follow-up results were available for 4211 patients, including 3677 (3677/4211, 87.32%) whose infants were normal after birth, 462 (462/4211, 10.97%) who terminated their pregnancy, 51 (51/4211, 1.21%) whose infants were abnormal after birth, and 21 (21/4211, 0.50%) who refused follow-up. The results of this study demonstrate significant variation in the diagnostic rate of chromosomal microarray analysis across different indications, providing valuable guidance for clinicians to assess the applicability of CMA technology in prenatal diagnosis.
Identifiants
pubmed: 38987582
doi: 10.1038/s41598-024-67123-5
pii: 10.1038/s41598-024-67123-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
15920Subventions
Organisme : National Key Research & Development Program of Liyin
ID : 2022YX0111
Informations de copyright
© 2024. The Author(s).
Références
Peng, Z. et al. Epidemiology of birth defects based on a birth defects surveillance system in southwestern China and the associated risk factors. Front. Pediatr. 11, 1165477 (2023).
doi: 10.3389/fped.2023.1165477
pubmed: 37547102
pmcid: 10401059
Wang, Q. Q., He, C. Y., Mei, J. & Xu, Y. L. Epidemiology of birth defects in Eastern China and the associated risk factors. Med. Sci. Monit. 28, e933782 (2022).
pubmed: 35034947
pmcid: 8779999
Wei, W. et al. Analyzing the trends and causes of birth defects—Jinan City, Shandong Province, China, 2005–2022. China CDC Wkly. 5, 978–983 (2023).
doi: 10.46234/ccdcw2023.184
pubmed: 38023392
pmcid: 10652091
Committee on Genetics and the Society for Maternal-Fetal Medicine. Committee Opinion No. 682: Microarrays and next-generation sequencing technology: The use of advanced genetic diagnostic tools in obstetrics and gynecology. Obstet. Gynecol. 128, e262–e268 (2016).
Hay, S. B. et al. ACOG and SMFM guidelines for prenatal diagnosis: Is karyotyping really sufficient?. Prenat. Diagn. 38, 184–189 (2018).
doi: 10.1002/pd.5212
pubmed: 29315677
pmcid: 5900922
Armour, C. M. et al. Practice guideline: Joint CCMG-SOGC recommendations for the use of chromosomal microarray analysis for prenatal diagnosis and assessment of fetal loss in Canada. J. Med. Genet. 55, 215–221 (2018).
doi: 10.1136/jmedgenet-2017-105013
pubmed: 29496978
Ganapathi, M., Nahum, O. & Levy, B. Prenatal diagnosis using chromosomal SNP microarrays. Methods Mol. Biol. 1885, 187–205 (2019).
doi: 10.1007/978-1-4939-8889-1_13
pubmed: 30506199
Cheng, S. S. W. et al. Experience of chromosomal microarray applied in prenatal and postnatal settings in Hong Kong. Am. J. Med. Genet. C Semin. Med. Genet. 181, 196–207 (2019).
doi: 10.1002/ajmg.c.31697
pubmed: 30903683
Srebniak, M. I. et al. Prenatal SNP array testing in 1000 fetuses with ultrasound anomalies: Causative, unexpected and susceptibility CNVs. Eur. J. Hum. Genet. 24, 645–651 (2016).
doi: 10.1038/ejhg.2015.193
pubmed: 26328504
Zhang, Z. et al. Pregnancy outcomes of fetuses with congenital heart disease after a prenatal diagnosis with chromosome microarray. Prenat. Diagn. 42, 79–86 (2022).
doi: 10.1002/pd.6078
pubmed: 34918366
Huang, R. et al. Prenatal diagnosis in the fetal hyperechogenic kidneys: Assessment using chromosomal microarray analysis and exome sequencing. Hum. Genet. 142, 835–847 (2023).
doi: 10.1007/s00439-023-02545-1
pubmed: 37095353
Xie, X. et al. Application of single nucleotide polymorphism microarray in prenatal diagnosis of fetuses with central nervous system abnormalities. Int. J. Gen. Med. 14, 4239–4246 (2021).
doi: 10.2147/IJGM.S323899
pubmed: 34393503
pmcid: 8354765
Donnelly, J. C. et al. Association of copy number variants with specific ultrasonographically detected fetal anomalies. Obstet. Gynecol. 124, 83–90 (2014).
doi: 10.1097/AOG.0000000000000336
pubmed: 24901266
pmcid: 4111105
Prenatal Screening And Diagnosis Group Birth Defect Prevention And Control Professional Committee Chinese Preventive Medical Association, Prenatal Diagnosis Group Society Of Medical Genetics Chinese Medical Association, Liu, J. Guidelines for the application of chromosomal microarray analysis in prenatal diagnosis (2023). Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 40, 1051–1061 (2023).
Hoppman, N., Rumilla, K., Lauer, E., Kearney, H. & Thorland, E. Patterns of homozygosity in patients with uniparental disomy: Detection rate and suggested reporting thresholds for SNP microarrays. Genet. Med. 20, 1522–1527 (2018).
doi: 10.1038/gim.2018.24
pubmed: 29565418
Kowalczyk, K. et al. Comparative genomic hybridization to microarrays in fetuses with high-risk prenatal indications: Polish experience with 7400 pregnancies. Genes (Basel). 13, 690 (2022).
doi: 10.3390/genes13040690
pubmed: 35456496
pmcid: 9032831
Xiang, J. et al. Clinical utility of SNP array analysis in prenatal diagnosis: A cohort study of 5000 pregnancies. Front. Genet. 11, 571219 (2020).
doi: 10.3389/fgene.2020.571219
pubmed: 33240322
pmcid: 7677511
Sagi-Dain, L. et al. Chromosomal microarray vs. NIPS: Analysis of 5541 low-risk pregnancies. Genet. Med. 21, 2462–2467 (2019).
doi: 10.1038/s41436-019-0550-x
pubmed: 31123319
Wapner, R. J. et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 367, 2175–2184 (2012).
doi: 10.1056/NEJMoa1203382
pubmed: 23215555
pmcid: 3549418
Wang, J. et al. Prospective chromosome analysis of 3429 amniocentesis samples in China using copy number variation sequencing. Am. J. Obstet. Gynecol. 219(287), e1-287.e18 (2018).
Cai, M. et al. Using single nucleotide polymorphism array for prenatal diagnosis in a large multicenter study in Southern China. Sci. Rep. 13, 7242 (2023).
doi: 10.1038/s41598-023-33668-0
pubmed: 37142625
pmcid: 10160013
Mastromoro, G. et al. Molecular approaches in fetal malformations, dynamic anomalies and soft markers: Diagnostic rates and challenges-systematic review of the literature and meta-analysis. Diagnostics (Basel). 12, 575 (2022).
doi: 10.3390/diagnostics12030575
pubmed: 35328129
pmcid: 8947110
Zhou, C. X. et al. Prenatal features of 17q12 microdeletion and microduplication syndromes: A retrospective case series. Taiwan J. Obstet. Gynecol. 60, 232–237 (2021).
doi: 10.1016/j.tjog.2021.01.001
pubmed: 33678321
Cai, M. et al. Evaluation of chromosomal abnormalities and copy number variations in fetuses with ultrasonic soft markers. BMC Med. Genom. 14, 19 (2021).
doi: 10.1186/s12920-021-00870-w
De Wit, M. C. et al. Additional value of prenatal genomic array testing in fetuses with isolated structural ultrasound abnormalities and a normal karyotype: A systematic review of the literature. Ultrasound Obstet. Gynecol. 43, 139–146 (2014).
doi: 10.1002/uog.12575
pubmed: 23897843
Piwowarczyk, P. et al. Prenatal diagnosis of Emanuel syndrome—Case series and review of the literature. J. Obstet. Gynaecol. 42, 2615–2620 (2022).
doi: 10.1080/01443615.2022.2114331
pubmed: 36048922
Xue, J. et al. 22q11.2 recurrent copy number variation-related syndrome: A retrospective analysis of our own microarray cohort and a systematic clinical overview of ClinGen curation. Transl. Pediatr. 10, 3273–3281 (2021).
doi: 10.21037/tp-21-560
pubmed: 35070841
pmcid: 8753460
Kirov, G. et al. The penetrance of copy number variations for schizophrenia and developmental delay. Biol. Psychiatry. 75, 378–385 (2014).
doi: 10.1016/j.biopsych.2013.07.022
pubmed: 23992924
Rosenfeld, J. A., Coe, B. P., Eichler, E. E., Cuckle, H. & Shaffer, L. G. Estimates of penetrance for recurrent pathogenic copy-number variations. Genet. Med. 15, 478–481 (2013).
doi: 10.1038/gim.2012.164
pubmed: 23258348
Sahoo, T. et al. Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: Outcomes, benefits, and challenges. Genet. Med. 19, 83–89 (2017).
doi: 10.1038/gim.2016.69
pubmed: 27337029
Gonzales, P. R. et al. Interpretation and reporting of large regions of homozygosity and suspected consanguinity/uniparental disomy, 2021 revision: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 24, 255–261 (2022).
doi: 10.1016/j.gim.2021.10.004
pubmed: 34906464
Kirin, M. et al. Genomic runs of homozygosity record population history and consanguinity. PLoS One. 5, e13996 (2010).
doi: 10.1371/journal.pone.0013996
pubmed: 21085596
pmcid: 2981575
Xue, H. et al. Genetic testing for fetal loss of heterozygosity using single nucleotide polymorphism array and whole-exome sequencing. Sci. Rep. 14, 2190 (2024).
doi: 10.1038/s41598-024-52812-y
pubmed: 38273042
pmcid: 10810965