The type III effector NopL interacts with GmREM1a and GmNFR5 to promote symbiosis in soybean.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
12 Jul 2024
Historique:
received: 25 10 2023
accepted: 03 07 2024
medline: 12 7 2024
pubmed: 12 7 2024
entrez: 11 7 2024
Statut: epublish

Résumé

The establishment of symbiotic interactions between leguminous plants and rhizobia requires complex cellular programming activated by Rhizobium Nod factors (NFs) as well as type III effector (T3E)-mediated symbiotic signaling. However, the mechanisms by which different signals jointly affect symbiosis are still unclear. Here we describe the mechanisms mediating the cross-talk between the broad host range rhizobia Sinorhizobium fredii HH103 T3E Nodulation Outer Protein L (NopL) effector and NF signaling in soybean. NopL physically interacts with the Glycine max Remorin 1a (GmREM1a) and the NFs receptor NFR5 (GmNFR5) and promotes GmNFR5 recruitment by GmREM1a. Furthermore, NopL and NF influence the expression of GmRINRK1, a receptor-like kinase (LRR-RLK) ortholog of the Lotus RINRK1, that mediates NF signaling. Taken together, our work indicates that S. fredii NopL can interact with the NF signaling cascade components to promote the symbiotic interaction in soybean.

Identifiants

pubmed: 38992018
doi: 10.1038/s41467-024-50228-w
pii: 10.1038/s41467-024-50228-w
doi:

Substances chimiques

Plant Proteins 0
Bacterial Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5852

Informations de copyright

© 2024. The Author(s).

Références

Liang, Q. et al. Natural variation of Dt2 determines branching in soybean. Nat. Commun. 13, 6429 (2022).
pubmed: 36307423 pmcid: 9616897 doi: 10.1038/s41467-022-34153-4
Zhang, H. et al. Modeling the impact of climatological factors and technological revolution on soybean yield: evidence from 13-major provinces of China. Int. J. Environ. Res. Public Health 19, 5708 (2022).
pubmed: 35565101 pmcid: 9103772 doi: 10.3390/ijerph19095708
Hou, S. et al. Targeting high nutrient efficiency to reduce fertilizer input in wheat production of China. Field Crops Res. 292, 108809 (2023).
Cooper, J.E. Multiple Responses of Rhizobia to Flavonoids During Legume Root Infection. In Advances in Botanical Research, Vol. 41 1–62 (Academic Press, 2004).
Oldroyd, G. E. D. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11, 252–263 (2013).
pubmed: 23493145 doi: 10.1038/nrmicro2990
Giraud, E. et al. Legumes symbioses: Absence of Nod genes in photosynthetic bradyrhizobia. Science 316, 1307–1312 (2007).
pubmed: 17540897 doi: 10.1126/science.1139548
Broghammer, A. et al. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc. Natl Acad. Sci. USA 109, 13859–13864 (2012).
pubmed: 22859506 pmcid: 3427107 doi: 10.1073/pnas.1205171109
Limpens, E. et al. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302, 630–633 (2003).
pubmed: 12947035 doi: 10.1126/science.1090074
Liang, Y. et al. Nonlegumes respond to rhizobial nod factors by suppressing the innate immune response. Science 341, 1384–1387 (2013).
pubmed: 24009356 doi: 10.1126/science.1242736
Roche, P. et al. The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc. Natl Acad. Sci. USA 93, 15305–15310 (1996).
pubmed: 8986807 pmcid: 26400 doi: 10.1073/pnas.93.26.15305
Mergaert, P., Van Montagu, M. & Holsters, M. Molecular mechanisms of Nod factor diversity. Mol. Microbiol. 25, 811–817 (1997).
pubmed: 9364907 doi: 10.1111/j.1365-2958.1997.mmi526.x
Rubsam, H. et al. Nanobody-driven signaling reveals the core receptor complex in root nodule symbiosis. Science 379, 272–277 (2023).
pubmed: 36656954 doi: 10.1126/science.ade9204
Smit, P. et al. NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 308, 1789–1791 (2005).
pubmed: 15961669 doi: 10.1126/science.1111025
Crespi, M. & Frugier, F. De novo organ formation from differentiated cells: root nodule organogenesis. Sci. Signal. 1, re11 (2008).
pubmed: 19066400 doi: 10.1126/scisignal.149re11
Radutoiu, S. et al. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425, 585–592 (2003).
pubmed: 14534578 doi: 10.1038/nature02039
Gourion, B., Berrabah, F., Ratet, P. & Stacey, G. Rhizobium-legume symbioses: the crucial role of plant immunity. Trends Plant Sci. 20, 186–194 (2015).
pubmed: 25543258 doi: 10.1016/j.tplants.2014.11.008
Antolin-Llovera, M., Ried, M. K. & Parniske, M. Cleavage of the SYMBIOSIS RECEPTOR-LIKE KINASE ectodomain promotes complex formation with nod factor receptor 5. Curr. Biol. 24, 422–427 (2014).
pubmed: 24508172 doi: 10.1016/j.cub.2013.12.053
Madsen, E. B. et al. Autophosphorylation is essential for the in vivo function of the Lotus japonicu Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. Plant J. 65, 404–417 (2011).
pubmed: 21265894 doi: 10.1111/j.1365-313X.2010.04431.x
He, J. et al. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Mol. Plant 12, 1561–1576 (2019).
pubmed: 31706032 doi: 10.1016/j.molp.2019.10.015
Gutjahr, C. et al. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20, 2989–3005 (2008).
pubmed: 19033527 pmcid: 2613669 doi: 10.1105/tpc.108.062414
Parniske, M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6, 763–775 (2008).
pubmed: 18794914 doi: 10.1038/nrmicro1987
Yu, Y. Remorins: essential regulators in plant-microbe interaction and cell death induction. Plant Physiol. 183, 435–436 (2020).
pubmed: 32493806 pmcid: 7271777 doi: 10.1104/pp.20.00490
Lefebvre, B. et al. A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc. Natl Acad. Sci. USA 107, 2343–2348 (2010).
pubmed: 20133878 pmcid: 2836688 doi: 10.1073/pnas.0913320107
Su, C. et al. Stabilization of membrane topologies by proteinaceous remorin scaffolds. Nat. Commun. 14, 323 (2023).
pubmed: 36658193 pmcid: 9852587 doi: 10.1038/s41467-023-35976-5
Chiu, C. H. & Paszkowski, U. Receptor-like kinases sustain symbiotic scrutiny. Plant Physiol. 182, 1597–1612 (2020).
pubmed: 32054781 pmcid: 7140970 doi: 10.1104/pp.19.01341
Liang, P. et al. Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains. Proc. Natl Acad. Sci. USA 115, 5289–5294 (2018).
pubmed: 29712849 pmcid: 5960310 doi: 10.1073/pnas.1721868115
Yuan, M. et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105 (2021).
pubmed: 33692546 pmcid: 8016741 doi: 10.1038/s41586-021-03316-6
Feng, F. & Zhou, J.-M. Plant-bacterial pathogen interactions mediated by type III effectors. Curr. Opin. Plant Biol. 15, 469–476 (2012).
pubmed: 22465133 doi: 10.1016/j.pbi.2012.03.004
Raffeiner, M. et al. The Xanthomonas type-III effector XopS stabilizes CaWRKY40a to regulate defense responses and stomatal immunity in pepper (Capsicum annuum). Plant Cell 34, 1684–1708 (2022).
pubmed: 35134217 pmcid: 9048924 doi: 10.1093/plcell/koac032
Desaki, Y., Miyata, K., Suzuki, M., Shibuya, N. & Kaku, H. Plant immunity and symbiosis signaling mediated by LysM receptors. Innate Immun. 24, 92–100 (2018).
pubmed: 29105533 doi: 10.1177/1753425917738885
Teulet, A., Camuel, A., Perret, X. & Giraud, E. The versatile roles of type III secretion systems in rhizobium-legume symbioses. Annu. Rev. Microbiol. 76, 45–65 (2022).
pubmed: 35395168 doi: 10.1146/annurev-micro-041020-032624
Teulet, A. et al. The rhizobial type III effector ErnA confers the ability to form nodules in legumes. Proc. Natl Acad. Sci. USA 116, 21758–21768 (2019).
pubmed: 31591240 pmcid: 6815186 doi: 10.1073/pnas.1904456116
Xin, D.-W. et al. Functional analysis of NopM, a Novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp strain NGR234. Plos Pathog. 8, e1002707 (2012).
pubmed: 22615567 pmcid: 3355095 doi: 10.1371/journal.ppat.1002707
Camuel, A. et al. Widespread Bradyrhizobium distribution of diverse Type III effectors that trigger legume nodulation in the absence of Nod factor. Isme J. 17, 1416–1429 (2023).
pubmed: 37355742 pmcid: 10432411 doi: 10.1038/s41396-023-01458-1
Acosta-Jurado, S. et al. Sinorhizobium fredii HH103 syrM inactivation affects the expression of a large number of genes, impairs nodulation with soybean and extends the host-range to Lotus japonicus. Environ. Microbiol. 22, 1104–1124 (2020).
pubmed: 31845498 doi: 10.1111/1462-2920.14897
Margaret, I. et al. Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. J. Biotechnol. 155, 11–19 (2011).
pubmed: 21458507 doi: 10.1016/j.jbiotec.2011.03.016
Pueppke, S. G. & Broughton, W. J. Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol. Plant Microbe Interact. 12, 293–318 (1999).
pubmed: 10188270 doi: 10.1094/MPMI.1999.12.4.293
Krysciak, D. et al. RNA sequencing analysis of the broad-host-range strain Sinorhizobium fredii NGR234 Identifies a Large Set of Genes Linked to Quorum Sensing-Dependent Regulation in the Background of a traI and ngrI deletion mutant. Appl. Environ. Microbiol. 80, 5655–5671 (2014).
pubmed: 25002423 pmcid: 4178615 doi: 10.1128/AEM.01835-14
Bartsev, A. V. et al. NopL, an effector protein of Rhizobium sp NGR234, thwarts activation of plant defense reactions. Plant Physiol. 134, 871–879 (2004).
pubmed: 14966249 pmcid: 344561 doi: 10.1104/pp.103.031740
Zhang, L., Chen, X.-J., Lu, H.-B., Xie, Z.-P. & Staehelin, C. Functional analysis of the type 3 effector nodulation outer protein L (NopL) from Rhizobium sp NGR234 symbiotic effects, phosphorylation, and interference with mitogen-activated protein kinase signaling. J. Biol. Chem. 286, 32178–32187 (2011).
pubmed: 21775427 pmcid: 3173237 doi: 10.1074/jbc.M111.265942
Ge, Y.-Y. et al. The type 3 effector NopL of Sinorhizobium sp strain NGR234 is a mitogen-activated protein kinase substrate. J. Exp. Bot. 67, 2483–2494 (2016).
pubmed: 26931172 doi: 10.1093/jxb/erw065
Okazaki, S., Kaneko, T., Sato, S. & Saeki, K. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc. Natl Acad. Sci. USA 110, 17131–17136 (2013).
pubmed: 24082124 pmcid: 3801068 doi: 10.1073/pnas.1302360110
Ratu, S. T. N. et al. Rhizobia use a pathogenic-like effector to hijack leguminous nodulation signalling. Sci. Rep. 11, 2034 (2021).
pubmed: 33479414 pmcid: 7820406 doi: 10.1038/s41598-021-81598-6
Liu, Y. et al. Pan-genome of wild and cultivated soybeans. Cell 182, 162 (2020).
pubmed: 32553274 doi: 10.1016/j.cell.2020.05.023
Schwedock, J. & Long, S. R. ATP sulphurylase activity of the nodP and nodQ gene products of Rhizobium meliloti. Nature 348, 644–647 (1990).
pubmed: 2250719 doi: 10.1038/348644a0
Fan, W. et al. Rhizobial infection of 4C cells triggers their endoreduplication during symbiotic nodule development in soybean. N. Phytologist 234, 1018–1030 (2022).
doi: 10.1111/nph.18036
Stagljar, I., Korostensky, C., Johnsson, N. & te Heesen, S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc. Natl Acad. Sci. USA 95, 5187–5192 (1998).
pubmed: 9560251 pmcid: 20236 doi: 10.1073/pnas.95.9.5187
Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880 (2018).
pubmed: 30125270 pmcid: 6126969 doi: 10.1038/nbt.4201
Zhang, Y. et al. TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated immunity. Nat. Commun. 10, 3252 (2019).
pubmed: 31324801 pmcid: 6642208 doi: 10.1038/s41467-019-11202-z
Li, X. et al. Atypical Receptor Kinase RINRK1 Required for Rhizobial Infection But Not Nodule Development in Lotus japonicus. Plant Physiol. 181, 804–816 (2019).
pubmed: 31409696 pmcid: 6776872 doi: 10.1104/pp.19.00509
Wang, L. et al. A GmNINa-miR172c-NNC1 regulatory network coordinates the nodulation and autoregulation of nodulation pathways in soybean. Mol. Plant 12, 1211–1226 (2019).
pubmed: 31201867 doi: 10.1016/j.molp.2019.06.002
Wang, Y. et al. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. Plant Cell 26, 4782–4801 (2014).
pubmed: 25549672 pmcid: 4311200 doi: 10.1105/tpc.114.131607
Franssen, H. J. et al. Root developmental programs shape the Medicago truncatula nodule meristem. Development 142, 2941–294 (2015).
pubmed: 26253408
Ghantasala, S. & Choudhury, S. R. Nod factor perception: an integrative view of molecular communication during legume symbiosis. Plant Mol. Biol. 110, 485–509 (2022).
pubmed: 36040570 doi: 10.1007/s11103-022-01307-3
Libourel, C. et al. Comparative phylotranscriptomics reveals ancestral and derived root nodule symbiosis programmes. Nat. Plants 9, 1067 (2023).
pubmed: 37322127 pmcid: 10356618 doi: 10.1038/s41477-023-01441-w
Deakin, W. J. & Broughton, W. J. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat. Rev. Microbiol. 7, 312–320 (2009).
pubmed: 19270720 doi: 10.1038/nrmicro2091
Okazaki, S. et al. Rhizobium–legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS. ISME J. 10, 64–74 (2016).
pubmed: 26161635 doi: 10.1038/ismej.2015.103
Nguyen, H. P., Ratu, S. T. N., Yasuda, M., Teaumroong, N. & Okazaki, S. Identification of Bradyrhizobium elkanii USDA61 Type III effectors determining symbiosis with Vigna mungo. Genes 11, 474 (2020).
pubmed: 32349348 pmcid: 7291247 doi: 10.3390/genes11050474
Reeve, W. et al. Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419. Stand. Genom. Sci. 2, 77–86 (2010).
doi: 10.4056/sigs.43526
Martinez-Abarca, F., Martinez-Rodriguez, L., Lopez-Contreras, J. A., Jimenez-Zurdo, J. I. & Toro, N. Complete genome sequence of the alfalfa symbiont Sinorhizobium/Ensifer meliloti strain GR4. Genome Announc. 1, e00174–12 (2013).
pubmed: 23409262 pmcid: 3569321 doi: 10.1128/genomeA.00174-12
Toth, K. et al. Functional domain analysis of the remorin protein LjSYMREM1 in Lotus japonicus. PLoS ONE 7, e30817 (2012).
pubmed: 22292047 pmcid: 3264624 doi: 10.1371/journal.pone.0030817
Gronnier, J. et al. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. Elife 6, e26404 (2017).
pubmed: 28758890 pmcid: 5536944 doi: 10.7554/eLife.26404
Huang, D. et al. Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization. Proc. Natl Acad. Sci. USA 116, 21274–21284 (2019).
pubmed: 31575745 pmcid: 6800329 doi: 10.1073/pnas.1911892116
Raffaele, S. et al. Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs Potato virus X movement. Plant Cell 21, 1541–1555 (2009).
pubmed: 19470590 pmcid: 2700541 doi: 10.1105/tpc.108.064279
Marin, M., Thallmair, V. & Ott, T. The intrinsically disordered N-terminal region of AtREM1.3 remorin protein mediates protein-protein interactions. J. Biol. Chem. 287, 39982–39991 (2012).
pubmed: 23027878 pmcid: 3501056 doi: 10.1074/jbc.M112.414292
Martinez, D. et al. Coiled-coil oligomerization controls localization of the plasma membrane REMORINs. J. Struct. Biol. 206, 12–19 (2019).
pubmed: 29481850 doi: 10.1016/j.jsb.2018.02.003
Jaillais, Y. & Ott, T. The nanoscale organization of the plasma membrane and its importance in signaling: a proteolipid perspective. Plant Physiol. 182, 1682–1696 (2020).
pubmed: 31857424 doi: 10.1104/pp.19.01349
Yu, H., Bao, H., Zhang, Z. & Cao, Y. Immune signaling pathway during terminal bacteroid differentiation in nodules. Trends Plant Sci. 24, 299–302 (2019).
pubmed: 30772172 doi: 10.1016/j.tplants.2019.01.010
Roy, S. et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32, 15–41 (2020).
pubmed: 31649123 doi: 10.1105/tpc.19.00279
Zhang, Y. et al. Mining for genes encoding proteins associated with NopL of Sinorhizobium fredii HH103 using quantitative trait loci in soybean (Glycine max Merr.) recombinant inbred lines. Plant Soil 431, 245–255 (2018).
doi: 10.1007/s11104-018-3745-z
Berrabah, F. et al. Insight into the control of nodule immunity and senescence during Medicago truncatula symbiosis. Plant Physiol. 191, 729–746 (2022).
pmcid: 9806560 doi: 10.1093/plphys/kiac505
Ma, C. et al. GmTNRP1, associated with rhizobial type-III effector NopT, regulates nitrogenase activity in the nodules of soybean (Glycine max). Food Energy Secur. 12, e466 (2023).
Ma, C. et al. QTL mapping of genes related to Nod factor signalling using recombinant inbred lines of soybean (Glycine max). Plant Breed. 140, 1070–1080 (2021).
doi: 10.1111/pbr.12976
Quandt, J. & Hynes, M. F. Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127, 15–21 (1993).
pubmed: 8486283 doi: 10.1016/0378-1119(93)90611-6
Figurski, D. H., Meyer, R. J. & Helinski, D. R. Suppression of Co1E1 replication properties by the Inc P-1 plasmid RK2 in hybrid plasmids constructed in vitro. J. Mol. Biol. 133, 295–318 (1979).
pubmed: 395312 doi: 10.1016/0022-2836(79)90395-4
Indrasumunar, A. et al. Inactivation of duplicated nod factor receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean (Glycine max L. Merr.). Plant Cell Physiol. 51, 201–214 (2010).
pubmed: 20007291 doi: 10.1093/pcp/pcp178
Paciorek, T., Sauer, M., Balla, J., Wisniewska, J. & Friml, J. Immunocytochemical technique for protein localization in sections of plant tissues. Nat. Protoc. 1, 104–107 (2006).
pubmed: 17406219 doi: 10.1038/nprot.2006.16
Dong, W. et al. An SHR-SCR module specifies legume cortical cell fate to enable nodulation. Nature 589, 586 (2021).
pubmed: 33299183 doi: 10.1038/s41586-020-3016-z
Jia, D. et al. A nonstructural protein encoded by a rice reovirus induces an incomplete autophagy to promote viral spread in insect vectors. PLoS Pathog. 18, e1010506 (2022).
pubmed: 35533206 pmcid: 9119444 doi: 10.1371/journal.ppat.1010506
Cheng, Z. et al. Nup96 and HOS1 are mutually stabilized and gate CONSTANS protein level, conferring long-day photoperiodic flowering regulation in Arabidopsis. Plant Cell 32, 374–391 (2020).
pubmed: 31826964 doi: 10.1105/tpc.19.00661
Brueckner, A., Polge, C., Lentze, N., Auerbach, D. & Schlattner, U. Yeast two-hybrid, a powerful tool for systems biology. Int. J. Mol. Sci. 10, 2763–2788 (2009).
doi: 10.3390/ijms10062763
Thaminy, S., Miller, J. & Stagljar, I. The split-ubiquitin membrane-based yeast two-hybrid system. Methods Mol. Biol. 261, 297–312 (2004).
pubmed: 15064465
Toth, K., Batek, J. & Stacey, G. Generation of soybean (Glycine max) transient transgenic roots. Curr. Protoc. Plant Biol. 1, 1–13 (2016).

Auteurs

Chao Ma (C)

College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China.
College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China.

Jinhui Wang (J)

College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China.
College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China.

Yongkang Gao (Y)

Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.

Xulun Dong (X)

College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China.

Haojie Feng (H)

College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China.

Mingliang Yang (M)

College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China.
College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China.

Yanyu Yu (Y)

College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China.

Chunyan Liu (C)

College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China. cyliucn@126.com.

Xiaoxia Wu (X)

College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China.

Zhaoming Qi (Z)

College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China.

Luis A J Mur (LAJ)

Department of Life Sciences, Aberystwyth University, Edward Llwyd Building, Aberystwyth, UK.

Kévin Magne (K)

Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France.
Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France.

Jianan Zou (J)

College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China.

Zhenbang Hu (Z)

College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China.

Zhixi Tian (Z)

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China. zxtian@genetics.ac.cn.
University of Chinese Academy of Sciences, Beijing, China. zxtian@genetics.ac.cn.

Chao Su (C)

Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China. chaosu@mail.hzau.edu.cn.

Pascal Ratet (P)

Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France. pascal.ratet@universite-paris-saclay.fr.
Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France. pascal.ratet@universite-paris-saclay.fr.

Qingshan Chen (Q)

College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China. qshchen@126.com.
College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China. qshchen@126.com.

Dawei Xin (D)

College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China. dwxin@neau.edu.cn.
College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China. dwxin@neau.edu.cn.
Department of Life Sciences, Aberystwyth University, Edward Llwyd Building, Aberystwyth, UK. dwxin@neau.edu.cn.
Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France. dwxin@neau.edu.cn.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma.

Arianna Giacomini, Sara Taranto, Giorgia Gazzaroli et al.
1.00
Humans Multiple Myeloma Receptors, Fibroblast Growth Factor Fibroblast Growth Factors Proto-Oncogene Proteins c-myc

Classifications MeSH