CD74 is a functional MIF receptor on activated CD4
Humans
Antigens, Differentiation, B-Lymphocyte
/ metabolism
CD4-Positive T-Lymphocytes
/ metabolism
Histocompatibility Antigens Class II
/ metabolism
Macrophage Migration-Inhibitory Factors
/ metabolism
Lymphocyte Activation
/ immunology
SARS-CoV-2
/ metabolism
COVID-19
/ immunology
Intramolecular Oxidoreductases
/ metabolism
Receptors, CXCR4
/ metabolism
Cell Movement
Male
Female
Middle Aged
Receptors, Immunologic
Atypical chemokine
CD74/invariant chain
CXCR4
MIF
Macrophage migration inhibitory factor
T cells
Journal
Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402
Informations de publication
Date de publication:
11 Jul 2024
11 Jul 2024
Historique:
received:
26
03
2024
accepted:
27
06
2024
revised:
04
06
2024
medline:
12
7
2024
pubmed:
12
7
2024
entrez:
11
7
2024
Statut:
epublish
Résumé
Next to its classical role in MHC II-mediated antigen presentation, CD74 was identified as a high-affinity receptor for macrophage migration inhibitory factor (MIF), a pleiotropic cytokine and major determinant of various acute and chronic inflammatory conditions, cardiovascular diseases and cancer. Recent evidence suggests that CD74 is expressed in T cells, but the functional relevance of this observation is poorly understood. Here, we characterized the regulation of CD74 expression and that of the MIF chemokine receptors during activation of human CD4
Identifiants
pubmed: 38992165
doi: 10.1007/s00018-024-05338-5
pii: 10.1007/s00018-024-05338-5
doi:
Substances chimiques
Antigens, Differentiation, B-Lymphocyte
0
invariant chain
0
Histocompatibility Antigens Class II
0
Macrophage Migration-Inhibitory Factors
0
Intramolecular Oxidoreductases
EC 5.3.-
MIF protein, human
EC 5.3.2.1
macrophage migration inhibitory factor receptor
0
Receptors, CXCR4
0
CXCR4 protein, human
0
Receptors, Immunologic
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
296Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : SFB1123-A3
Organisme : Deutsche Forschungsgemeinschaft
ID : INST 409/209-1 FUGG
Organisme : Deutsche Forschungsgemeinschaft
ID : EXC 2145 SyNergy-ID 390857198
Organisme : LMU Munich
ID : Metiphys scholarship
Organisme : LMU Munich-DFG excellence (LMUexc) program
ID : Knowledge Transfer Fund
Organisme : Friedrich-Baur-Stiftung
ID : 72/20
Informations de copyright
© 2024. The Author(s).
Références
Schröder B (2016) The multifaceted roles of the invariant chain CD74—more than just a chaperone. Biochim Biophys Acta 1863:1269–1281. https://doi.org/10.1016/j.bbamcr.2016.03.026
doi: 10.1016/j.bbamcr.2016.03.026
pubmed: 27033518
Calandra T, Roger T (2003) Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 3:791–800. https://doi.org/10.1038/nri1200
doi: 10.1038/nri1200
pubmed: 14502271
pmcid: 7097468
Kapurniotu A, Gokce O, Bernhagen J (2019) The multitasking potential of alarmins and atypical chemokines. Front Med (Lausanne) 6:3. https://doi.org/10.3389/fmed.2019.00003
doi: 10.3389/fmed.2019.00003
pubmed: 30729111
Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L et al (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13:587–596. https://doi.org/10.1038/nm1567
doi: 10.1038/nm1567
pubmed: 17435771
Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Mitchell RA, Bucala R (2003) MIF signal transduction initiated by binding to CD74. J Exp Med 197:1467–1476. https://doi.org/10.1084/jem.20030286
doi: 10.1084/jem.20030286
pubmed: 12782713
pmcid: 2193907
Klasen C, Ohl K, Sternkopf M, Shachar I, Schmitz C, Heussen N, Hobeika E, Levit-Zerdoun E, Tenbrock K, Reth M et al (2014) MIF promotes B cell chemotaxis through the receptors CXCR4 and CD74 and ZAP-70 signaling. J Immunol 192:5273–5284. https://doi.org/10.4049/jimmunol.1302209
doi: 10.4049/jimmunol.1302209
pubmed: 24760155
Schwartz V, Kruttgen A, Weis J, Weber C, Ostendorf T, Lue H, Bernhagen J (2012) Role for CD74 and CXCR4 in clathrin-dependent endocytosis of the cytokine MIF. Eur J Cell Biol 91:435–449. https://doi.org/10.1016/j.ejcb.2011.08.006
doi: 10.1016/j.ejcb.2011.08.006
pubmed: 22014447
Schwartz V, Lue H, Kraemer S, Korbiel J, Krohn R, Ohl K, Bucala R, Weber C, Bernhagen J (2009) A functional heteromeric MIF receptor formed by CD74 and CXCR4. FEBS Lett 583:2749–2757. https://doi.org/10.1016/j.febslet.2009.07.058
doi: 10.1016/j.febslet.2009.07.058
pubmed: 19665027
pmcid: 2911026
Kontos C, El Bounkari O, Krammer C, Sinitski D, Hille K, Zan C, Yan G, Wang S, Gao Y, Brandhofer M et al (2020) Designed CXCR4 mimic acts as a soluble chemokine receptor that blocks atherogenic inflammation by agonist-specific targeting. Nat Commun 11:5981. https://doi.org/10.1038/s41467-020-19764-z
doi: 10.1038/s41467-020-19764-z
pubmed: 33239628
pmcid: 7689490
Sinitski D, Kontos C, Krammer C, Asare Y, Kapurniotu A, Bernhagen J (2019) Macrophage migration inhibitory factor (MIF)-based therapeutic concepts in atherosclerosis and inflammation. Thromb Haemost. https://doi.org/10.1055/s-0039-1677803
doi: 10.1055/s-0039-1677803
pubmed: 30716779
Shi X, Leng L, Wang T, Wang W, Du X, Li J, McDonald C, Chen Z, Murphy JW, Lolis E et al (2006) CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 25:595–606. https://doi.org/10.1016/j.immuni.2006.08.020
doi: 10.1016/j.immuni.2006.08.020
pubmed: 17045821
pmcid: 3707630
Alampour-Rajabi S, El Bounkari O, Rot A, Muller-Newen G, Bachelerie F, Gawaz M, Weber C, Schober A, Bernhagen J (2015) MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis. FASEB J 29:4497–4511. https://doi.org/10.1096/fj.15-273904
doi: 10.1096/fj.15-273904
pubmed: 26139098
Ma H, Wang J, Thomas DP, Tong C, Leng L, Wang W, Merk M, Zierow S, Bernhagen J, Ren J et al (2010) Impaired macrophage migration inhibitory factor-AMP-activated protein kinase activation and ischemic recovery in the senescent heart. Circulation 122:282–292. https://doi.org/10.1161/circulationaha.110.953208
doi: 10.1161/circulationaha.110.953208
pubmed: 20606117
pmcid: 2907453
Heinrichs D, Knauel M, Offermanns C, Berres ML, Nellen A, Leng L, Schmitz P, Bucala R, Trautwein C, Weber C et al (2011) Macrophage migration inhibitory factor (MIF) exerts antifibrotic effects in experimental liver fibrosis via CD74. Proc Natl Acad Sci USA 108:17444–17449. https://doi.org/10.1073/pnas.1107023108
doi: 10.1073/pnas.1107023108
pubmed: 21969590
pmcid: 3198363
Qi D, Hu X, Wu X, Merk M, Leng L, Bucala R, Young LH (2009) Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion. J Clin Investig 119:3807–3816. https://doi.org/10.1172/jci39738
doi: 10.1172/jci39738
pubmed: 19920350
pmcid: 2786800
Burton JD, Ely S, Reddy PK, Stein R, Gold DV, Cardillo TM, Goldenberg DM (2004) CD74 is expressed by multiple myeloma and is a promising target for therapy. Clin Cancer Res 10:6606–6611
doi: 10.1158/1078-0432.CCR-04-0182
pubmed: 15475450
Stein R, Mattes MJ, Cardillo TM, Hansen HJ, Chang CH, Burton J, Govindan S, Goldenberg DM (2007) CD74: a new candidate target for the immunotherapy of B-cell neoplasms. Clin Cancer Res 13:5556s–5563s. https://doi.org/10.1158/1078-0432.CCR-07-1167
doi: 10.1158/1078-0432.CCR-07-1167
pubmed: 17875789
De la Cruz-Mosso U, Garcia-Iglesias T, Bucala R, Estrada-Garcia I, Gonzalez-Lopez L, Cerpa-Cruz S, Parra-Rojas I, Gamez-Nava JI, Perez-Guerrero EE, Munoz-Valle JF (2018) MIF promotes a differential Th1/Th2/Th17 inflammatory response in human primary cell cultures: Predominance of Th17 cytokine profile in PBMC from healthy subjects and increase of IL-6 and TNF-alpha in PBMC from active SLE patients. Cell Immunol 324:42–49. https://doi.org/10.1016/j.cellimm.2017.12.010
doi: 10.1016/j.cellimm.2017.12.010
pubmed: 29397904
Alibashe-Ahmed M, Roger T, Serre-Beinier V, Berishvili E, Reith W, Bosco D, Berney T (2019) Macrophage migration inhibitory factor regulates TLR4 expression and modulates TCR/CD3-mediated activation in CD4+ T lymphocytes. Sci Rep 9:9380. https://doi.org/10.1038/s41598-019-45260-6
doi: 10.1038/s41598-019-45260-6
pubmed: 31253838
pmcid: 6599059
Hernandez-Palma LA, Garcia-Arellano S, Bucala R, Llamas-Covarrubias MA, De la Cruz-Mosso U, Oregon-Romero E, Cerpa-Cruz S, Parra-Rojas I, Plascencia-Hernandez A, Munoz-Valle JF (2019) Functional MIF promoter haplotypes modulate Th17-related cytokine expression in peripheral blood mononuclear cells from control subjects and rheumatoid arthritis patients. Cytokine 115:89–96. https://doi.org/10.1016/j.cyto.2018.11.014
doi: 10.1016/j.cyto.2018.11.014
pubmed: 30467094
Gaber T, Schellmann S, Erekul KB, Fangradt M, Tykwinska K, Hahne M, Maschmeyer P, Wagegg M, Stahn C, Kolar P et al (2011) Macrophage migration inhibitory factor counterregulates dexamethasone-mediated suppression of hypoxia-inducible factor-1 alpha function and differentially influences human CD4+ T cell proliferation under hypoxia. J Immunol 186:764–774. https://doi.org/10.4049/jimmunol.0903421
doi: 10.4049/jimmunol.0903421
pubmed: 21169549
Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, Lohoff M, Gemsa D, Donnelly T, Bucala R (1996) An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci USA 93:7849–7854. https://doi.org/10.1073/pnas.93.15.7849
doi: 10.1073/pnas.93.15.7849
pubmed: 8755565
pmcid: 38837
Matsumoto K, Kanmatsuse K (2001) Increased production of macrophage migration inhibitory factor by T cells in patients with IgA nephropathy. Am J Nephrol 21:455–464. https://doi.org/10.1159/000046649
doi: 10.1159/000046649
pubmed: 11799262
Kim HK, Garcia AB, Siu E, Tilstam P, Das R, Roberts S, Leng L, Bucala R (2019) Macrophage migration inhibitory factor regulates innate gammadelta T-cell responses via IL-17 expression. FASEB J 33:6919–6932. https://doi.org/10.1096/fj.201802433R
doi: 10.1096/fj.201802433R
pubmed: 30817226
pmcid: 6529351
David JR (1966) Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell–antigen interaction. Proc Natl Acad Sci USA 56:72–77. https://doi.org/10.1073/pnas.56.1.72
doi: 10.1073/pnas.56.1.72
pubmed: 5229858
pmcid: 285677
Yang L, Kong Y, Ren H, Li M, Wei CJ, Shi E, Jin WN, Hao J, Vandenbark AA, Offner H (2017) Upregulation of CD74 and its potential association with disease severity in subjects with ischemic stroke. Neurochem Int 107:148–155. https://doi.org/10.1016/j.neuint.2016.11.007
doi: 10.1016/j.neuint.2016.11.007
pubmed: 27884769
Fagone P, Mazzon E, Cavalli E, Bramanti A, Petralia MC, Mangano K, Al-Abed Y, Bramati P, Nicoletti F (2018) Contribution of the macrophage migration inhibitory factor superfamily of cytokines in the pathogenesis of preclinical and human multiple sclerosis: In silico and in vivo evidences. J Neuroimmunol 322:46–56. https://doi.org/10.1016/j.jneuroim.2018.06.009
doi: 10.1016/j.jneuroim.2018.06.009
pubmed: 29935880
Cano-Gamez E, Soskic B, Roumeliotis TI, So E, Smyth DJ, Baldrighi M, Willé D, Nakic N, Esparza-Gordillo J, Larminie CGC et al (2020) Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4(+) T cells to cytokines. Nat Commun 11:1801. https://doi.org/10.1038/s41467-020-15543-y
doi: 10.1038/s41467-020-15543-y
pubmed: 32286271
pmcid: 7156481
Broere F, van Eden W (2019) T cell subsets and T cell-mediated immunity. In: Parnham MJ, Nijkamp FP, Rossi AG (eds) Nijkamp and Parnham’s principles of immunopharmacology. Springer International Publishing, Berlin, pp 23–35. https://doi.org/10.1007/978-3-030-10811-3_3
doi: 10.1007/978-3-030-10811-3_3
Govender M, Hopkins FR, Göransson R, Svanberg C, Shankar EM, Hjorth M, Nilsdotter-Augustinsson Å, Sjöwall J, Nyström S, Larsson M (2022) T cell perturbations persist for at least 6 months following hospitalization for COVID-19. Front Immunol. https://doi.org/10.3389/fimmu.2022.931039
doi: 10.3389/fimmu.2022.931039
pubmed: 36685582
pmcid: 9399885
Bleilevens C, Soppert J, Hoffmann A, Breuer T, Bernhagen J, Martin L, Stiehler L, Marx G, Dreher M, Stoppe C, Simon TP (2021) Macrophage migration inhibitory factor (MIF) plasma concentration in critically ill COVID-19 patients: a prospective observational study. Diagnostics (Basel). https://doi.org/10.3390/diagnostics11020332
doi: 10.3390/diagnostics11020332
pubmed: 33671433
Moss P (2022) The T cell immune response against SARS-CoV-2. Nat Immunol 23:186–193. https://doi.org/10.1038/s41590-021-01122-w
doi: 10.1038/s41590-021-01122-w
pubmed: 35105982
Bernhagen J, Mitchell RA, Calandra T, Voelter W, Cerami A, Bucala R (1994) Purification, bioactivity, and secondary structure analysis of mouse and human macrophage migration Inhibitory factor (MIF). Biochemistry 33:14144–14155
doi: 10.1021/bi00251a025
pubmed: 7947826
Marimuthu R, Francis H, Dervish S, Li SCH, Medbury H, Williams H (2018) Characterization of human monocyte subsets by whole blood flow cytometry analysis. J Vis Exp. https://doi.org/10.3791/57941
doi: 10.3791/57941
pubmed: 30394370
pmcid: 6235554
Szabo PA, Levitin HM, Miron M, Snyder ME, Senda T, Yuan J, Cheng YL, Bush EC, Dogra P, Thapa P et al (2019) Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat Commun 10:4706. https://doi.org/10.1038/s41467-019-12464-3
doi: 10.1038/s41467-019-12464-3
pubmed: 31624246
pmcid: 6797728
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8
doi: 10.1186/s13059-014-0550-8
pubmed: 25516281
pmcid: 4302049
Blighe KRS, Lewis M (2023) EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. R package version Bioconductor version: Release (3.19), Open Source Software for Bioinformatics 1.20.0. https://doi.org/10.18129/B9.bioc.EnhancedVolcano .
Wickham H (2016) ggplot2: Elegant graphics for data analysis, 2nd edn. Springer, Cham. https://doi.org/10.1007/978-3-319-24277-4
doi: 10.1007/978-3-319-24277-4
Wolf T, Jin W, Zoppi G, Vogel IA, Akhmedov M, Bleck CKE, Beltraminelli T, Rieckmann JC, Ramirez NJ, Benevento M et al (2020) Dynamics in protein translation sustaining T cell preparedness. Nat Immunol 21:927–937. https://doi.org/10.1038/s41590-020-0714-5
doi: 10.1038/s41590-020-0714-5
pubmed: 32632289
pmcid: 7610365
Yevshin I, Sharipov R, Kolmykov S, Kondrakhin Y, Kolpakov F (2019) GTRD: a database on gene transcription regulation—2019 update. Nucleic Acids Res 47:D100-d105. https://doi.org/10.1093/nar/gky1128
doi: 10.1093/nar/gky1128
pubmed: 30445619
Wong AK, Park CY, Greene CS, Bongo LA, Guan Y, Troyanskaya OG (2012) IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Res 40:W484-490. https://doi.org/10.1093/nar/gks458
doi: 10.1093/nar/gks458
pubmed: 22684505
pmcid: 3394282
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P et al (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:D605-d612. https://doi.org/10.1093/nar/gkaa1074
doi: 10.1093/nar/gkaa1074
pubmed: 33237311
Loetscher M, Geiser T, O’Reilly T, Zwahlen R, Baggiolini M, Moser B (1994) Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J Biol Chem 269:232–237
doi: 10.1016/S0021-9258(17)42339-8
pubmed: 8276799
Mo H, Monard S, Pollack H, Ip J, Rochford G, Wu L, Hoxie J, Borkowsky W, Ho DD, Moore JP (1998) Expression patterns of the HIV type 1 coreceptors CCR5 and CXCR4 on CD4+ T cells and monocytes from cord and adult blood. AIDS Res Hum Retroviruses 14:607–617. https://doi.org/10.1089/aid.1998.14.607
doi: 10.1089/aid.1998.14.607
pubmed: 9591715
Tian Y, Babor M, Lane J, Schulten V, Patil VS, Seumois G, Rosales SL, Fu Z, Picarda G, Burel J et al (2017) Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA. Nat Commun 8:1473. https://doi.org/10.1038/s41467-017-01728-5
doi: 10.1038/s41467-017-01728-5
pubmed: 29133794
pmcid: 5684192
Clement LT (1992) Isoforms of the CD45 common leukocyte antigen family: markers for human T-cell differentiation. J Clin Immunol 12:1–10. https://doi.org/10.1007/bf00918266
doi: 10.1007/bf00918266
pubmed: 1532395
Merkenschlager M, Terry L, Edwards R, Beverley PC (1988) Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1: implications for differential CD45 expression in T cell memory formation. Eur J Immunol 18:1653–1661. https://doi.org/10.1002/eji.1830181102
doi: 10.1002/eji.1830181102
pubmed: 2974420
Akbar AN, Terry L, Timms A, Beverley PC, Janossy G (1988) Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol 140:2171–2178
doi: 10.4049/jimmunol.140.7.2171
pubmed: 2965180
Ko HS, Fu SM, Winchester RJ, Yu DT, Kunkel HG (1979) Ia determinants on stimulated human T lymphocytes. Occurrence on mitogen- and antigen-activated T cells. J Exp Med 150:246–255. https://doi.org/10.1084/jem.150.2.246
doi: 10.1084/jem.150.2.246
pubmed: 88499
Pieters J, Horstmann H, Bakke O, Griffiths G, Lipp J (1991) Intracellular transport and localization of major histocompatibility complex class II molecules and associated invariant chain. J Cell Biol 115:1213–1223. https://doi.org/10.1083/jcb.115.5.1213
doi: 10.1083/jcb.115.5.1213
pubmed: 1955469
Marks MS, Blum JS, Cresswell P (1990) Invariant chain trimers are sequestered in the rough endoplasmic reticulum in the absence of association with HLA class II antigens. J Cell Biol 111:839–855. https://doi.org/10.1083/jcb.111.3.839
doi: 10.1083/jcb.111.3.839
pubmed: 2391366
Strubin M, Berte C, Mach B (1986) Alternative splicing and alternative initiation of translation explain the four forms of the Ia antigen-associated invariant chain. EMBO J 5:3483–3488. https://doi.org/10.1002/j.1460-2075.1986.tb04673.x
doi: 10.1002/j.1460-2075.1986.tb04673.x
pubmed: 3104027
pmcid: 1167384
Abraham RT, Weiss A (2004) Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol 4:301–308. https://doi.org/10.1038/nri1330
doi: 10.1038/nri1330
pubmed: 15057788
Arneson LS, Miller J (2007) The chondroitin sulfate form of invariant chain trimerizes with conventional invariant chain and these complexes are rapidly transported from the trans-Golgi network to the cell surface. Biochem J 406:97–103. https://doi.org/10.1042/bj20070446
doi: 10.1042/bj20070446
pubmed: 17492940
pmcid: 1948987
Miller J, Hatch JA, Simonis S, Cullen SE (1988) Identification of the glycosaminoglycan-attachment site of mouse invariant-chain proteoglycan core protein by site-directed mutagenesis. Proc Natl Acad Sci USA 85:1359–1363. https://doi.org/10.1073/pnas.85.5.1359
doi: 10.1073/pnas.85.5.1359
pubmed: 3422739
pmcid: 279770
Sant AJ, Cullen SE, Giacoletto KS, Schwartz BD (1985) Invariant chain is the core protein of the Ia-associated chondroitin sulfate proteoglycan. J Exp Med 162:1916–1934. https://doi.org/10.1084/jem.162.6.1916
doi: 10.1084/jem.162.6.1916
pubmed: 3864916
Koch N, Moldenhauer G, Hofmann WJ, Möller P (1991) Rapid intracellular pathway gives rise to cell surface expression of the MHC class II-associated invariant chain (CD74). J Immunol 147:2643–2651
doi: 10.4049/jimmunol.147.8.2643
pubmed: 1918985
Henne C, Schwenk F, Koch N, Möller P (1995) Surface expression of the invariant chain (CD74) is independent of concomitant expression of major histocompatibility complex class II antigens. Immunology 84:177
pubmed: 7750992
pmcid: 1415095
Ong GL, Goldenberg DM, Hansen HJ, Mattes MJ (1999) Cell surface expression and metabolism of major histocompatibility complex class II invariant chain (CD74) by diverse cell lines. Immunology 98:296–302. https://doi.org/10.1046/j.1365-2567.1999.00868.x
doi: 10.1046/j.1365-2567.1999.00868.x
pubmed: 10540230
pmcid: 2326920
Veenstra H, Ferris WF, Bouic PJ (2001) Major histocompatibility complex class II invariant chain expression in non-antigen-presenting cells. Immunology 103:218–225. https://doi.org/10.1046/j.1365-2567.2001.01230.x
doi: 10.1046/j.1365-2567.2001.01230.x
pubmed: 11412309
pmcid: 1783233
Klasen C, Ziehm T, Huber M, Asare Y, Kapurniotu A, Shachar I, Bernhagen J, El Bounkari O (2018) LPS-mediated cell surface expression of CD74 promotes the proliferation of B cells in response to MIF. Cell Signal 46:32–42. https://doi.org/10.1016/j.cellsig.2018.02.010
doi: 10.1016/j.cellsig.2018.02.010
pubmed: 29476963
Marsh LM, Cakarova L, Kwapiszewska G, von Wulffen W, Herold S, Seeger W, Lohmeyer J (2009) Surface expression of CD74 by type II alveolar epithelial cells: a potential mechanism for macrophage migration inhibitory factor-induced epithelial repair. Am J Physiol Lung Cell Mol Physiol 296:L442-452. https://doi.org/10.1152/ajplung.00525.2007
doi: 10.1152/ajplung.00525.2007
pubmed: 19136583
Bories J-C, Willerford DM, Grévin D, Davidson L, Camus A, Martin P, Stéhelin D, Alt FW (1995) Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 proto-oncogene. Nature 377:635–638. https://doi.org/10.1038/377635a0
doi: 10.1038/377635a0
pubmed: 7566176
Muthusamy N, Barton K, Leiden JM (1995) Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature 377:639–642. https://doi.org/10.1038/377639a0
doi: 10.1038/377639a0
pubmed: 7566177
Reddy M, Eirikis E, Davis C, Davis HM, Prabhakar U (2004) Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J Immunol Methods 293:127–142. https://doi.org/10.1016/j.jim.2004.07.006
doi: 10.1016/j.jim.2004.07.006
pubmed: 15541283
Poloni C, Schonhofer C, Ivison S, Levings MK, Steiner TS, Cook L (2023) T-cell activation-induced marker assays in health and disease. Immunol Cell Biol 101:491–503. https://doi.org/10.1111/imcb.12636
doi: 10.1111/imcb.12636
pubmed: 36825901
pmcid: 10952637
Marić MA, Taylor MD, Blum JS (1994) Endosomal aspartic proteinases are required for invariant-chain processing. Proc Natl Acad Sci USA 91:2171–2175. https://doi.org/10.1073/pnas.91.6.2171
doi: 10.1073/pnas.91.6.2171
pubmed: 8134367
pmcid: 43332
Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, Reith W (2000) CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev 14:1156–1166
doi: 10.1101/gad.14.9.1156
pubmed: 10809673
pmcid: 316580
Holling TM, Schooten E, van Den Elsen PJ (2004) Function and regulation of MHC class II molecules in T-lymphocytes: of mice and men. Hum Immunol 65:282–290. https://doi.org/10.1016/j.humimm.2004.01.005
doi: 10.1016/j.humimm.2004.01.005
pubmed: 15120183
Brandhofer M, Hoffmann A, Blanchet X, Siminkovitch E, Rohlfing AK, El Bounkari O, Nestele JA, Bild A, Kontos C, Hille K et al (2022) Heterocomplexes between the atypical chemokine MIF and the CXC-motif chemokine CXCL4L1 regulate inflammation and thrombus formation. Cell Mol Life Sci 79:512. https://doi.org/10.1007/s00018-022-04539-0
doi: 10.1007/s00018-022-04539-0
pubmed: 36094626
Westmeier J, Brochtrup A, Paniskaki K, Karakoese Z, Werner T, Sutter K, Dolff S, Limmer A, Mittermüller D, Liu J et al (2023) Macrophage migration inhibitory factor receptor CD74 expression is associated with expansion and differentiation of effector T cells in COVID-19 patients. Front Immunol 14:1236374. https://doi.org/10.3389/fimmu.2023.1236374
doi: 10.3389/fimmu.2023.1236374
pubmed: 37946732
pmcid: 10631787
Sánchez-Zuno GA, Bucala R, Hernández-Bello J, Román-Fernández IV, García-Chagollán M, Nicoletti F, Matuz-Flores MG, García-Arellano S, Esparza-Michel JA, Cerpa-Cruz S et al (2021) Canonical (CD74/CD44) and non-canonical (CXCR2, 4 and 7) MIF receptors are differentially expressed in rheumatoid arthritis patients evaluated by DAS28-ESR. J Clin Med. https://doi.org/10.3390/jcm11010120
doi: 10.3390/jcm11010120
pubmed: 35011861
pmcid: 8745239
Bermejo M, Martín-Serrano J, Oberlin E, Pedraza MA, Serrano A, Santiago B, Caruz A, Loetscher P, Baggiolini M, Arenzana-Seisdedos F, Alcami J (1998) Activation of blood T lymphocytes down-regulates CXCR4 expression and interferes with propagation of X4 HIV strains. Eur J Immunol 28:3192–3204. https://doi.org/10.1002/(sici)1521-4141(199810)28:10%3c3192::Aid-immu3192%3e3.0.Co;2-e
doi: 10.1002/(sici)1521-4141(199810)28:10<3192::Aid-immu3192>3.0.Co;2-e
pubmed: 9808188
Kumar A, Humphreys TD, Kremer KN, Bramati PS, Bradfield L, Edgar CE, Hedin KE (2006) CXCR4 physically associates with the T cell receptor to signal in T cells. Immunity 25:213–224. https://doi.org/10.1016/j.immuni.2006.06.015
doi: 10.1016/j.immuni.2006.06.015
pubmed: 16919488
Abbal C, Jourdan P, Hori T, Bousquet J, Yssel H, Pène J (1999) TCR-mediated activation of allergen-specific CD45RO(+) memory T lymphocytes results in down-regulation of cell-surface CXCR4 expression and a strongly reduced capacity to migrate in response to stromal cell-derived factor-1. Int Immunol 11:1451–1462. https://doi.org/10.1093/intimm/11.9.1451
doi: 10.1093/intimm/11.9.1451
pubmed: 10464166
Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P, Wei S, David O, Curiel TJ, Zou W (2004) Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 64:8451–8455. https://doi.org/10.1158/0008-5472.Can-04-1987
doi: 10.1158/0008-5472.Can-04-1987
pubmed: 15548717
Zhang H, Jadhav RR, Cao W, Goronzy IN, Zhao TV, Jin J, Ohtsuki S, Hu Z, Morales J, Greenleaf WJ et al (2023) Aging-associated HELIOS deficiency in naive CD4+ T cells alters chromatin remodeling and promotes effector cell responses. Nat Immunol 24:96–109. https://doi.org/10.1038/s41590-022-01369-x
doi: 10.1038/s41590-022-01369-x
pubmed: 36510022
Li M, Yao D, Zeng X, Kasakovski D, Zhang Y, Chen S, Zha X, Li Y, Xu L (2019) Age related human T cell subset evolution and senescence. Immun Ageing 16:24. https://doi.org/10.1186/s12979-019-0165-8
doi: 10.1186/s12979-019-0165-8
pubmed: 31528179
pmcid: 6739976
Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint J-P, Labalette M (2006) Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4+ versus effector memory and terminally differentiated memory cells in CD8+ compartment. Mech Ageing Dev 127:274–281. https://doi.org/10.1016/j.mad.2005.11.001
doi: 10.1016/j.mad.2005.11.001
pubmed: 16352331
Idorn M, Skadborg SK, Kellermann L, Halldórsdóttir HR, Holmen Olofsson G, Met Ö, Thor Straten P (2018) Chemokine receptor engineering of T cells with CXCR2 improves homing towards subcutaneous human melanomas in xenograft mouse model. Oncoimmunology 7:e1450715. https://doi.org/10.1080/2162402x.2018.1450715
doi: 10.1080/2162402x.2018.1450715
pubmed: 30221044
pmcid: 6136860
Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B, Arenzana-Seisdedos F, Thelen M, Bachelerie F (2005) The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 280:35760–35766. https://doi.org/10.1074/jbc.M508234200
doi: 10.1074/jbc.M508234200
pubmed: 16107333
Berahovich RD, Zabel BA, Penfold ME, Lewén S, Wang Y, Miao Z, Gan L, Pereda J, Dias J, Slukvin II et al (2010) CXCR7 protein is not expressed on human or mouse leukocytes. J Immunol 185:5130–5139. https://doi.org/10.4049/jimmunol.1001660
doi: 10.4049/jimmunol.1001660
pubmed: 20889540
Koch N, Lauer W, Habicht J, Dobberstein B (1987) Primary structure of the gene for the murine Ia antigen-associated invariant chains (Ii). An alternatively spliced exon encodes a cysteine-rich domain highly homologous to a repetitive sequence of thyroglobulin. EMBO J 6:1677–1683. https://doi.org/10.1002/j.1460-2075.1987.tb02417.x
doi: 10.1002/j.1460-2075.1987.tb02417.x
pubmed: 3038530
pmcid: 553541
O’Sullivan DM, Noonan D, Quaranta V (1987) Four Ia invariant chain forms derive from a single gene by alternate splicing and alternate initiation of transcription/translation. J Exp Med 166:444–460. https://doi.org/10.1084/jem.166.2.444
doi: 10.1084/jem.166.2.444
pubmed: 3036998
Claesson L, Larhammar D, Rask L, Peterson PA (1983) cDNA clone for the human invariant gamma chain of class II histocompatibility antigens and its implications for the protein structure. Proc Natl Acad Sci USA 80:7395–7399. https://doi.org/10.1073/pnas.80.24.7395
doi: 10.1073/pnas.80.24.7395
pubmed: 6324166
pmcid: 389957
Koch N, Haemmerling GJ (1985) Ia-associated invariant chain is fatty acylated before addition of sialic acid. Biochemistry 24:6185–6190
doi: 10.1021/bi00343a023
pubmed: 3866610
Kuwana T, Peterson PA, Karlsson L (1998) Exit of major histocompatibility complex class II-invariant chain p35 complexes from the endoplasmic reticulum is modulated by phosphorylation. Proc Natl Acad Sci USA 95:1056–1061. https://doi.org/10.1073/pnas.95.3.1056
doi: 10.1073/pnas.95.3.1056
pubmed: 9448284
pmcid: 18670
Buckley CD, Amft N, Bradfield PF, Pilling D, Ross E, Arenzana-Seisdedos F, Amara A, Curnow SJ, Lord JM, Scheel-Toellner D, Salmon M (2000) Persistent induction of the chemokine receptor CXCR4 by TGF-beta 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J Immunol 165:3423–3429. https://doi.org/10.4049/jimmunol.165.6.3423
doi: 10.4049/jimmunol.165.6.3423
pubmed: 10975862
Collins T, Korman AJ, Wake CT, Boss JM, Kappes DJ, Fiers W, Ault KA, Gimbrone MA Jr, Strominger JL, Pober JS (1984) Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc Natl Acad Sci USA 81:4917–4921. https://doi.org/10.1073/pnas.81.15.4917
doi: 10.1073/pnas.81.15.4917
pubmed: 6431411
pmcid: 391603
Gil-Yarom N, Radomir L, Sever L, Kramer MP, Lewinsky H, Bornstein C, Blecher-Gonen R, Barnett-Itzhaki Z, Mirkin V, Friedlander G et al (2017) CD74 is a novel transcription regulator. Proc Natl Acad Sci USA 114:562–567. https://doi.org/10.1073/pnas.1612195114
doi: 10.1073/pnas.1612195114
pubmed: 28031488
David K, Friedlander G, Pellegrino B, Radomir L, Lewinsky H, Leng L, Bucala R, Becker-Herman S, Shachar I (2022) CD74 as a regulator of transcription in normal B cells. Cell Rep 41:111572. https://doi.org/10.1016/j.celrep.2022.111572
doi: 10.1016/j.celrep.2022.111572
pubmed: 36323260
Schneppenheim J, Dressel R, Hüttl S, Lüllmann-Rauch R, Engelke M, Dittmann K, Wienands J, Eskelinen EL, Hermans-Borgmeyer I, Fluhrer R et al (2013) The intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chain. J Exp Med 210:41–58. https://doi.org/10.1084/jem.20121069
doi: 10.1084/jem.20121069
pubmed: 23267015
pmcid: 3549707
Gore Y, Starlets D, Maharshak N, Becker-Herman S, Kaneyuki U, Leng L, Bucala R, Shachar I (2008) Macrophage migration inhibitory factor induces B cell survival by activation of a CD74-CD44 receptor complex. J Biol Chem 283:2784–2792. https://doi.org/10.1074/jbc.M703265200
doi: 10.1074/jbc.M703265200
pubmed: 18056708
Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, Sundaram B, Banoth B, Malireddi RKS et al (2021) Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184:149-168.e117. https://doi.org/10.1016/j.cell.2020.11.025
doi: 10.1016/j.cell.2020.11.025
pubmed: 33278357
Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, Ellingson MK, Mao T, Oh JE, Israelow B et al (2020) Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584:463–469. https://doi.org/10.1038/s41586-020-2588-y
doi: 10.1038/s41586-020-2588-y
pubmed: 32717743
pmcid: 7477538
Mallapaty S (2020) The coronavirus is most deadly if you are older and male—new data reveal the risks. Nature 585:16–17. https://doi.org/10.1038/d41586-020-02483-2
doi: 10.1038/d41586-020-02483-2
pubmed: 32860026
Gustafson CE, Kim C, Weyand CM, Goronzy JJ (2020) Influence of immune aging on vaccine responses. J Allergy Clin Immunol 145:1309–1321. https://doi.org/10.1016/j.jaci.2020.03.017
doi: 10.1016/j.jaci.2020.03.017
pubmed: 32386655
pmcid: 7198995
Quan X-Q, Ruan L, Zhou H-R, Gao W-L, Zhang Q, Zhang C-T (2023) Age-related changes in peripheral T-cell subpopulations in elderly individuals: an observational study. Open Life Sci. https://doi.org/10.1515/biol-2022-0557
doi: 10.1515/biol-2022-0557
pubmed: 36816803
pmcid: 9922058