Breast cancer, viruses, and human leukocyte antigen (HLA).
Breast cancer
Human leukocyte antigen (HLA)
Immunogenicity
Viruses
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
13 Jul 2024
13 Jul 2024
Historique:
received:
05
02
2024
accepted:
24
06
2024
medline:
14
7
2024
pubmed:
14
7
2024
entrez:
13
7
2024
Statut:
epublish
Résumé
Several viruses have been implicated in breast cancer, including human herpes virus 4 (HHV4), human herpes virus 5 (HHV5), human papilloma virus (HPV), human JC polyoma virus (JCV), human endogenous retrovirus group K (HERVK), bovine leukemia virus (BLV) and mouse mammary tumor virus (MMTV). Human leukocyte antigen (HLA) is involved in virus elimination and has been shown to influence breast cancer protection/susceptibility. Here we investigated the hypothesis that the contribution of a virus to development of breast cancer would depend on the presence of the virus, which, in turn, would be inversely related to the success of its elimination. For that purpose, we estimated in silico predicted binding affinities (PBA) of proteins of the 7 viruses above to 127 common HLA alleles (69 Class I [HLA-I] and 58 Class II HLA-II]) and investigated the association of these binding affinities to the breast cancer-HLA (BC-HLA) immunogenetic profile of the same alleles. Using hierarchical tree clustering, we found that, for HLA-I, viruses BLV, JCV and MMTV were grouped with the BC-HLA, whereas, for HLA-II, viruses BLV, HERVK, HPV, JCV, and MMTV were grouped with BC-HLA. Finally, for both HLA classes, the average PBAs of the viruses grouped with the BC-HLA profile were significantly lower than those of the other, non BC-HLA associated viruses. Assuming that low PBAs are likely associated with slower viral elimination, these findings support the hypothesis that a defective/slower elimination and, hence, longer persistence and inefficient/delayed production of antibodies against them underlies the observed association of the low-PBA group with breast cancer.
Identifiants
pubmed: 39003313
doi: 10.1038/s41598-024-65707-9
pii: 10.1038/s41598-024-65707-9
doi:
Substances chimiques
HLA Antigens
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
16179Informations de copyright
© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Références
Global Burden of Disease 2019 Cancer Collaboration. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 8, 420–444. https://doi.org/10.1001/jamaoncol.2021.6987 (2022).
doi: 10.1001/jamaoncol.2021.6987
Coughlin, S. S. Epidemiology of breast cancer in women. In Breast Cancer Metastasis and Drug Resistance: Challenges and Progress, 2nd edn. (ed. Ahmad, A.) 9–29 (Springer, 2019).
World Health Organization. Breast cancer. https://www.who.int/news-room/fact-sheets/detail/breast-cancer . Created July 12, 2023 (accessed 26 Jan 2024).
Alibek, K., Kakpenova, A., Mussabekova, A., Sypabekova, M. & Karatayeva, N. Role of viruses in the development of breast cancer. Infect. Agent Cancer 8, 32. https://doi.org/10.1186/1750-9378-8-32 (2013).
doi: 10.1186/1750-9378-8-32
pubmed: 24138789
pmcid: 3765990
Lawson, J. S. & Glenn, W. K. Catching viral breast cancer. Infect. Agent Cancer. 16, 37. https://doi.org/10.1186/s13027-021-00366-3 (2021).
doi: 10.1186/s13027-021-00366-3
pubmed: 34108009
pmcid: 8191131
Herbein, G. & Kumar, A. The oncogenic potential of human cytomegalovirus and breast cancer. Front. Oncol. 4, 230. https://doi.org/10.3389/fonc.2014.00230 (2014).
doi: 10.3389/fonc.2014.00230
pubmed: 25202681
pmcid: 4142708
Heng, B. et al. Human papilloma virus is associated with breast cancer. Br. J. Cancer. 101, 1345–1350. https://doi.org/10.1038/sj.bjc.6605282 (2009).
doi: 10.1038/sj.bjc.6605282
pubmed: 19724278
pmcid: 2737128
Richardson, A. K. et al. Breast cancer and cytomegalovirus. Clin. Transl. Oncol. 22, 585–602. https://doi.org/10.1007/s12094-019-02164-1 (2020).
doi: 10.1007/s12094-019-02164-1
pubmed: 31256361
Curty, G. et al. Human endogenous retrovirus K in cancer: A potential biomarker and immunotherapeutic target. Viruses. 12, 726. https://doi.org/10.3390/v12070726 (2020).
doi: 10.3390/v12070726
pubmed: 32640516
pmcid: 7412025
Glenn, W. K. et al. Epstein–Barr virus, human papillomavirus and mouse mammary tumour virus as multiple viruses in breast cancer. PLoS One. 7, e48788. https://doi.org/10.1371/journal.pone.0048788 (2012).
doi: 10.1371/journal.pone.0048788
pubmed: 23183846
pmcid: 3501510
Lawson, J. S. & Glenn, W. K. Multiple oncogenic viruses are present in human breast tissues before development of virus associated breast cancer. Infect. Agents Cancer. 12, 55. https://doi.org/10.1186/s13027-017-0165-2 (2017).
doi: 10.1186/s13027-017-0165-2
Al Hamad, M. et al. Human mammary tumor virus, human papilloma virus, and Epstein–Barr virus infection are associated with sporadic breast cancer metastasis. Breast Cancer. 14, 1178223420976388. https://doi.org/10.1177/1178223420976388 (2020).
doi: 10.1177/1178223420976388
pubmed: 33281452
pmcid: 7691892
Zur Hausen, H. The search for infectious causes of human cancers: Where and why. Virology. 392, 1. https://doi.org/10.1016/j.virol.2009.06.001 (2009).
doi: 10.1016/j.virol.2009.06.001
pubmed: 19720205
Meuer, S. C. et al. Surface structures involved in target recognition by human cytotoxic T lymphocytes. Science. 218, 471–473. https://doi.org/10.1126/science.6981845 (1982).
doi: 10.1126/science.6981845
pubmed: 6981845
Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 21, 298–312. https://doi.org/10.1038/s41568-021-00339-z (2021).
doi: 10.1038/s41568-021-00339-z
pubmed: 33750922
Josephs, T. M., Grant, E. J. & Gras, S. Molecular challenges imposed by MHC-I restricted long epitopes on T cell immunity. Biol. Chem. 398, 1027–1036. https://doi.org/10.1515/hsz-2016-0305 (2017).
doi: 10.1515/hsz-2016-0305
pubmed: 28141543
Jardetzky, T. S. et al. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368, 711–718. https://doi.org/10.1038/368711a0 (1994).
doi: 10.1038/368711a0
pubmed: 8152483
Trowsdale, J. & Knight, J. C. Major histocompatibility complex genomics and human disease. Annu. Rev. Genom. Hum. Genet. 14, 301–323. https://doi.org/10.1146/annurev-genom-091212-153455 (2013).
doi: 10.1146/annurev-genom-091212-153455
James, L. M. & Georgopoulos, A. P. Immunogenetic profiles and associations of breast, cervical, ovarian, and uterine cancers. Cancer Inform. 22, 11769351221148588. https://doi.org/10.1177/11769351221148588 (2023).
doi: 10.1177/11769351221148588
pubmed: 36684415
pmcid: 9846304
Chaudhuri, S. et al. Genetic susceptibility to breast cancer: HLA DQB*03032 and HLA DRB1*11 may represent protective alleles. Proc. Natl. Acad. Sci. U. S. A. 97, 11451–11454. https://doi.org/10.1073/pnas.97.21.11451 (2000).
doi: 10.1073/pnas.97.21.11451
pubmed: 11027344
pmcid: 17220
Cantú de León, D. et al. High resolution human leukocyte antigen (HLA) class I and class II allele typing in Mexican mestizo women with sporadic breast cancer: case-control study. BMC Cancer 9, 48. https://doi.org/10.1186/1471-2407-9-48 (2009).
doi: 10.1186/1471-2407-9-48
pubmed: 19196481
pmcid: 2653544
Lavado, R. et al. The HLA-B7 allele confers susceptibility to breast cancer in Spanish women. Immunol. Lett. 101, 223–225. https://doi.org/10.1016/j.imlet.2005.03.006 (2005).
doi: 10.1016/j.imlet.2005.03.006
pubmed: 16188571
Gopalkrishnan, L., Patil, S., Chhaya, S., Badwe, R. & Joshi, N. HLA alleles in pre-menopausal breast cancer patients from western India. Indian J. Med. Res. 124, 305–312 (2006).
pubmed: 17085834
Kaneko, K. et al. Clinical implication of HLA class I expression in breast cancer. BMC Cancer. 11, 454. https://doi.org/10.1186/1471-2407-11-454 (2011).
doi: 10.1186/1471-2407-11-454
pubmed: 22014037
pmcid: 3214195
de Kruijf, E. M. et al. The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin. Cancer Res. 16, 1272–1280. https://doi.org/10.1158/1078-0432.CCR-09-1844 (2010).
doi: 10.1158/1078-0432.CCR-09-1844
pubmed: 20145162
Ren, Y. et al. HLA class-I and class-II restricted neoantigen loads predict overall survival in breast cancer. OncoImmunology. 9, 1744947. https://doi.org/10.1080/2162402X.2020.1744947 (2020).
doi: 10.1080/2162402X.2020.1744947
pubmed: 32523802
pmcid: 7255108
Noblejas-López, M. D. M. et al. Expression of MHC class I, HLA-A and HLA-B identifies immune-activated breast tumors with favorable outcome. Oncoimmunology. 8, e1629780. https://doi.org/10.1080/2162402X.2019.1629780 (2019).
doi: 10.1080/2162402X.2019.1629780
pubmed: 31646075
pmcid: 6791424
Stefanovic, S. et al. Cut-off analysis of HLA-A and HLA-B/C expression as a potential prognosticator of favorable survival in patients with metastatic breast cancer. Anticancer Res. 43, 1449–1454. https://doi.org/10.21873/anticanres.16293 (2023).
doi: 10.21873/anticanres.16293
pubmed: 36974778
Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48(W1), W449–W454. https://doi.org/10.1093/nar/gkaa379 (2020).
doi: 10.1093/nar/gkaa379
pubmed: 32406916
pmcid: 7319546
Website: http://tools.iedb.org/mhci/result/ (accessed 2 Apr 2024).
Zur Hausen, H. Papillomaviruses and cancer: From basic studies to clinical application. Nat. Rev. Cancer 2, 342–350. https://doi.org/10.1038/nrc798 (2002).
doi: 10.1038/nrc798
pubmed: 12044010
Muñoz, N., Castellsagué, X., de González, A. B. & Gissmann, L. HPV in the etiology of human cancer. Vaccine. 24, S3/1-S3/10. https://doi.org/10.1016/j.vaccine.2006.05.115 (2006).
doi: 10.1016/j.vaccine.2006.05.115
pubmed: 16949995
Gonzalez-Galarza, F. F. et al. Allele frequency net database (AFND): 2020 update: Gold-standard data classification, open access genotype data and new query tools. Nucleic Acid Res. 48, D783–D788 (2020).
pubmed: 31722398
Charonis, S., James, L. M. & Georgopoulos, A. P. In silico assessment of binding affinities of three dementia-protective Human Leukocyte Antigen (HLA) alleles to nine human herpes virus antigens. Curr. Res. Transl. Med. 68, 211–216. https://doi.org/10.1016/j.retram.2020.06.002 (2020).
doi: 10.1016/j.retram.2020.06.002
pubmed: 32624427
Charonis, S., Tsilibary, E. P. & Georgopoulos, A. SARS-CoV-2 virus and Human Leukocyte Antigen (HLA) Class II: Investigation in silico of binding affinities for COVID-19 protection and vaccine development. J. Immunol. Sci. 4, 12–23. https://doi.org/10.29245/2578-3009/2020/4.1198 (2020).
doi: 10.29245/2578-3009/2020/4.1198
Charonis, S. A., Tsilibary, E. P. & Georgopoulos, A. P. In silico investigation of binding affinities between human leukocyte antigen class I molecules and SARS-CoV-2 virus spike and ORF1ab proteins. Explor. Immunol. 1, 16–26. https://doi.org/10.37349/ei.2021.00003 (2021).
doi: 10.37349/ei.2021.00003