The role of reactive oxygen species in plant-virus interactions.
Defense mechanisms
Plant virus
Plant-virus interaction
Reactive oxygen species
Viral symptoms
Journal
Plant cell reports
ISSN: 1432-203X
Titre abrégé: Plant Cell Rep
Pays: Germany
ID NLM: 9880970
Informations de publication
Date de publication:
16 Jul 2024
16 Jul 2024
Historique:
received:
01
04
2024
accepted:
01
07
2024
medline:
17
7
2024
pubmed:
17
7
2024
entrez:
16
7
2024
Statut:
epublish
Résumé
Reactive oxygen species (ROS) play a complex role in interactions between plant viruses and their host plants. They can both help the plant defend against viral infection and support viral infection and spread. This review explores the various roles of ROS in plant-virus interactions, focusing on their involvement in symptom development and the activation of plant defense mechanisms. The article discusses how ROS can directly inhibit viral infection, as well as how they can regulate antiviral mechanisms through various pathways involving miRNAs, virus-derived small interfering RNAs, viral proteins, and host proteins. Additionally, it examines how ROS can enhance plant resistance by interacting with hormonal pathways and external substances. The review also considers how ROS might promote viral infection and transmission, emphasizing their intricate role in plant-virus dynamics. These insights offer valuable guidance for future research, such as exploring the manipulation of ROS-related gene expression through genetic engineering, developing biopesticides, and adjusting environmental conditions to improve plant resistance to viruses. This framework can advance research in plant disease resistance, agricultural practices, and disease control.
Identifiants
pubmed: 39014054
doi: 10.1007/s00299-024-03280-1
pii: 10.1007/s00299-024-03280-1
doi:
Substances chimiques
Reactive Oxygen Species
0
MicroRNAs
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
197Subventions
Organisme : Doctoral Research Initiation Fund of Liaocheng University
ID : 20230928
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Adamiec M, Gibasiewicz K, Lucinski R, Giera W, Chelminiak P, Szewczyk S et al (2015) Excitation energy transfer and charge separation are affected in arabidopsis thaliana mutants lacking light-harvesting chlorophyll a/b binding protein Lhcb3. J Photochem Photobiol B 153:423–428. https://doi.org/10.1016/j.jphotobiol.2015.11.002
doi: 10.1016/j.jphotobiol.2015.11.002
pubmed: 26562806
Ahmad P, Jaleel CA, Azooz M, Nabi G (2009) Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants. Botany Res Int 2(1):11–20
Ajjawi I, Tsegaye Y, Shintani D (2007) Determination of the genetic, molecular, and biochemical basis of the Arabidopsis thaliana thiamin auxotroph th1. Arch Biochem Biophys 459(1):107–114. https://doi.org/10.1016/j.abb.2006.11.011
doi: 10.1016/j.abb.2006.11.011
pubmed: 17174261
Alazem, M., and Burch‐Smith, T.M. (2024). Roles of ROS and redox in regulating cell‐to‐cell communication: Spotlight on viral modulation of redox for local spread. Plant, Cell Environment.
Alazem M, Lin NS (2015) Roles of plant hormones in the regulation of host-virus interactions. Mol Plant Pathol 16(5):529–540. https://doi.org/10.1111/mpp.12204
doi: 10.1111/mpp.12204
pubmed: 25220680
Al-Mokadem AZ, Alnaggar AE-AM, Mancy AG, Sofy AR, Sofy MR, Mohamed AKSH et al (2022) Foliar application of chitosan and phosphorus alleviate the potato virus Y-induced resistance by modulation of the reactive oxygen species antioxidant defense system activity and gene expression in potato. Agronomy. https://doi.org/10.3390/agronomy12123064
doi: 10.3390/agronomy12123064
Arias MC, Luna C, Rodríguez M, Lenardon S, Taleisnik E (2005) Sunflower chlorotic mottle virus in compatible interactions with sunflower: ROS generation and antioxidant response. Eur J Plant Pathol 113:223–232
doi: 10.1007/s10658-005-7559-5
Ashraf, M.A., Riaz, M., Arif, M.S., Rasheed, R., Iqbal, M., Hussain, I., et al. (2019). "The role of non-enzymatic antioxidants in improving abiotic stress tolerance in plants," in Plant tolerance to environmental stress. CRC Press), 129–144.
Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272(33):20313–20316. https://doi.org/10.1074/jbc.272.33.20313
doi: 10.1074/jbc.272.33.20313
pubmed: 9252331
Boualem A, Dogimont C, Bendahmane A (2016) The battle for survival between viruses and their host plants. Curr Opin Virol 17:32–38
doi: 10.1016/j.coviro.2015.12.001
pubmed: 26800310
Cao D, Sun Y, Wang L, He Q, Zheng J, Deng F et al (2015) Alpha-momorcharin (alpha-MMC) exerts effective anti-human breast tumor activities but has a narrow therapeutic window in vivo. Fitoterapia 100:139–149. https://doi.org/10.1016/j.fitote.2014.11.009
doi: 10.1016/j.fitote.2014.11.009
pubmed: 25447153
Castro JC, Castro CG, Cobos M (2023) Genetic and biochemical strategies for regulation of L-ascorbic acid biosynthesis in plants through the L-galactose pathway. Front Plant Sci 14:1099829. https://doi.org/10.3389/fpls.2023.1099829
doi: 10.3389/fpls.2023.1099829
pubmed: 37021310
pmcid: 10069634
Clarke SF, Guy PL, Burritt DJ, Jameson PE (2002) Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol Plant 114(2):157–164
doi: 10.1034/j.1399-3054.2002.1140201.x
pubmed: 11903962
Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53
doi: 10.3389/fenvs.2014.00053
Das AB, Sadowska-Bartosz I, Konigstorfer A, Kettle AJ, Winterbourn CC (2018) Superoxide dismutase protects ribonucleotide reductase from inactivation in yeast. Free Radic Biol Med 116:114–122. https://doi.org/10.1016/j.freeradbiomed.2018.01.001
doi: 10.1016/j.freeradbiomed.2018.01.001
pubmed: 29305896
Deng XG, Zhu T, Zou LJ, Han XY, Zhou X, Xi DH et al (2016) Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. Plant J 85(4):478–493. https://doi.org/10.1111/tpj.13120
doi: 10.1111/tpj.13120
pubmed: 26749255
Ding LN, Li YT, Wu YZ, Li T, Geng R, Cao J et al (2022) Plant disease resistance-related signaling pathways: recent progress and future prospects. Int J Mol Sci. https://doi.org/10.3390/ijms232416200
doi: 10.3390/ijms232416200
pubmed: 36614145
pmcid: 9820211
Doke N, Ohashi Y (1988) Involvement of an O-2-generating system in the induction of necrotic lesions on tobacco-leaves Infected with tobacco mosaic-virus. Physiol Mol Plant Pathol 32(1):163–175. https://doi.org/10.1016/s0885-5765(88)80013-4
doi: 10.1016/s0885-5765(88)80013-4
Elmoshaty FIB, Pike SM, Novacky AJ, Sehgal OP (1993) lipid-peroxidation and superoxide production in cowpea (vigna-unguiculata) leaves infected with tobacco ringspot Virus Or Southern bean mosaic-virus. Physiol Mol Plant Pathol 43(2):109–119. https://doi.org/10.1006/pmpp.1993.1044
doi: 10.1006/pmpp.1993.1044
Elnahal AS, El-Saadony MT, Saad AM, Desoky E-SM, El-Tahan AM, Rady MM et al (2022) The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: a review. Eur J Plant Pathol 162(4):759–792
doi: 10.1007/s10658-021-02393-7
Gullberg RC, Jordan Steel J, Moon SL, Soltani E, Geiss BJ (2015) Oxidative stress influences positive strand RNA virus genome synthesis and capping. Virology 475:219–229. https://doi.org/10.1016/j.virol.2014.10.037
doi: 10.1016/j.virol.2014.10.037
pubmed: 25514423
Guo H, Gu L, Liu F, Chen F, Ge F, Sun Y (2019) Aphid-borne viral spread Is enhanced by virus-induced accumulation of plant reactive oxygen species. Plant Physiol 179(1):143–155. https://doi.org/10.1104/pp.18.00437
doi: 10.1104/pp.18.00437
pubmed: 30381318
Guo H, Bi X, Wang Z, Jiang D, Cai M, An M et al (2022) Reactive oxygen species-related genes participate in resistance to cucumber green mottle mosaic virus infection regulated by boron in nicotiana benthamiana and watermelon. Front Plant Sci 13:1027404. https://doi.org/10.3389/fpls.2022.1027404
doi: 10.3389/fpls.2022.1027404
pubmed: 36438146
pmcid: 9691971
Hanke G, Mulo P (2013) Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ 36(6):1071–1084. https://doi.org/10.1111/pce.12046
doi: 10.1111/pce.12046
pubmed: 23190083
Hernández JA, Rubio M, Olmos E, Ros-Barceló A, Martínez-Gómez P (2004) Oxidative stress induced by long-term plum pox virus infection in peach (Prunus persica L. cv GF305). Physiol Plant 122(4):486–495. https://doi.org/10.1111/j.1399-3054.2004.00431.x
doi: 10.1111/j.1399-3054.2004.00431.x
Hernández JA, Gullner G, Clemente-Moreno MJ, Künstler A, Juhász C, Díaz-Vivancos P et al (2016) Oxidative stress and antioxidative responses in plant–virus interactions. Physiol Mol Plant Pathol 94:134–148. https://doi.org/10.1016/j.pmpp.2015.09.001
doi: 10.1016/j.pmpp.2015.09.001
Holtgrefe S, Bader KP, Horton P, Scheibe R, von Schaewen A, Backhausen JE (2003) Decreased content of leaf ferredoxin changes electron distribution and limits photosynthesis in transgenic potato plants. Plant Physiol 133(4):1768–1778. https://doi.org/10.1104/pp.103.026013
doi: 10.1104/pp.103.026013
pubmed: 14645726
pmcid: 300731
Hyodo K, Hashimoto K, Kuchitsu K, Suzuki N, Okuno T (2017) Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus. Proc Natl Acad Sci USA 114(7):E1282–E1290. https://doi.org/10.1073/pnas.1610212114
doi: 10.1073/pnas.1610212114
pubmed: 28154139
pmcid: 5320965
Inaba J-I, Kim BM, Shimura H, Masuta C (2011) Virus-induced necrosis Is a consequence of direct protein-protein interaction between a Viral RNA-silencing suppressor and a host catalase. Plant Physiol 156(4):2026–2036. https://doi.org/10.1104/pp.111.180042
doi: 10.1104/pp.111.180042
pubmed: 21622812
pmcid: 3149961
Jiang T, Du K, Xie J, Sun G, Wang P, Chen X et al (2023) Activated malate circulation contributes to the manifestation of light-dependent mosaic symptoms. Cell Rep 42(4):112333. https://doi.org/10.1016/j.celrep.2023.112333
doi: 10.1016/j.celrep.2023.112333
pubmed: 37018076
Király L, Hafez YM, Fodor J, Király Z (2008) Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J Gen Virol 89:799–808. https://doi.org/10.1099/vir.0.83328-0
doi: 10.1099/vir.0.83328-0
pubmed: 18272772
Kitab B, Satoh M, Ohmori Y, Munakata T, Sudoh M, Kohara M et al (2019) Ribonucleotide reductase M2 promotes RNA replication of hepatitis C virus by protecting NS5B protein from hPLIC1-dependent proteasomal degradation. J Biol Chem 294(15):5759–5773. https://doi.org/10.1074/jbc.RA118.004397
doi: 10.1074/jbc.RA118.004397
pubmed: 30755480
pmcid: 6463693
Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci USA 104(22):9534–9539. https://doi.org/10.1073/pnas.0701625104
doi: 10.1073/pnas.0701625104
pubmed: 17485667
pmcid: 1866185
Lamalakshmi Devi E, Kumar S, Basanta Singh T, Sharma SK, Beemrote A, Devi CP et al (2017) Adaptation strategies and defence mechanisms of plants during environmental stress. Med Plants Environmental Challenges. https://doi.org/10.1007/978-3-319-68717-9_20
doi: 10.1007/978-3-319-68717-9_20
Lei R, Du Z, Qiu Y, Zhu S (2016) The detection of hydrogen peroxide involved in plant virus infection by fluorescence spectroscopy. Luminescence 31(5):1158–1165. https://doi.org/10.1002/bio.3090
doi: 10.1002/bio.3090
pubmed: 27373455
Lewis DH (2019) Boron: the essential element for vascular plants that never was. New Phytol 221(4):1685–1690. https://doi.org/10.1111/nph.15519
doi: 10.1111/nph.15519
pubmed: 30289999
Li Z, Burritt DJ (2003) The influence of cocksfoot mottle virus on antioxidant metabolism in the leaves of dactylis glomerata L. Physiol Mol Plant Pathol 62(5):285–295. https://doi.org/10.1016/s0885-5765(03)00075-4
doi: 10.1016/s0885-5765(03)00075-4
Li Y, Li Q, Hong Q, Lin Y, Mao W, Zhou S (2018) Reactive oxygen species triggering systemic programmed cell death process via elevation of nuclear calcium ion level in tomatoes resisting tobacco mosaic virus. Plant Sci 270:166–175. https://doi.org/10.1016/j.plantsci.2018.02.010
doi: 10.1016/j.plantsci.2018.02.010
pubmed: 29576070
Li T, Huang Y, Xu ZS, Wang F, Xiong AS (2019) Salicylic acid-induced differential resistance to the tomato yellow leaf curl virus among resistant and susceptible tomato cultivars. BMC Plant Biol 19(1):173. https://doi.org/10.1186/s12870-019-1784-0
doi: 10.1186/s12870-019-1784-0
pubmed: 31046667
pmcid: 6498608
Lin KY, Wu SY, Hsu YH, Lin NS (2021) MiR398-regulated antioxidants contribute to bamboo mosaic virus accumulation and symptom manifestation. Plant Physiol 188(1):593–607. https://doi.org/10.1093/plphys/kiab451
doi: 10.1093/plphys/kiab451
pmcid: 9040666
Liu P, Zhang X, Zhang F, Xu M, Ye Z, Wang K et al (2021) A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. Mol Plant 14(7):1088–1103. https://doi.org/10.1016/j.molp.2021.03.022
doi: 10.1016/j.molp.2021.03.022
pubmed: 33798746
Liu X, Liu S, Chen X, Prasanna BM, Ni Z, Li X et al (2022) Maize miR167-ARF3/30-polyamine oxidase 1 module-regulated H
doi: 10.1093/plphys/kiac099
pubmed: 35298645
pmcid: 9157100
Manacorda CA, Mansilla C, Debat HJ, Zavallo D, Sanchez F, Ponz F et al (2013) Salicylic acid determines differential senescence produced by two Turnip mosaic virus strains involving reactive oxygen species and early transcriptomic changes. Mol Plant Microbe Interact 26(12):1486–1498. https://doi.org/10.1094/MPMI-07-13-0190-R
doi: 10.1094/MPMI-07-13-0190-R
pubmed: 23945002
Manjunatha L, Rajashekara H, Uppala LS, Ambika DS, Patil B, Shankarappa KS et al (2022) Mechanisms of microbial plant protection and control of plant viruses. Plants 11(24):3449
doi: 10.3390/plants11243449
pubmed: 36559558
pmcid: 9785281
Mejía-Teniente L, Durán-Flores BA, Torres-Pacheco I, González-Chavira MM, Rivera-Bustamante RF, Feregrino-Perez AA et al (2019) Hydrogen peroxide protects pepper (Capsicum annuum L.) against pepper golden mosaic geminivirus (PepGMV) infections. Physiol Mol Plant Pathol 106:23–29. https://doi.org/10.1016/j.pmpp.2018.11.008
doi: 10.1016/j.pmpp.2018.11.008
Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F (2022) Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol 23(10):663–679. https://doi.org/10.1038/s41580-022-00499-2
doi: 10.1038/s41580-022-00499-2
pubmed: 35760900
Moeder W, Yoshioka K, Klessig DF (2005) Involvement of the small GTPase Rac in the defense responses of tobacco to pathogens. Mol Plant Microbe Interact 18(2):116–124. https://doi.org/10.1094/mpmi-18-0116
doi: 10.1094/mpmi-18-0116
pubmed: 15720080
Montalbini P (1991) Enhanced uricase activity in tobacco mosaic-virus-infected tobacco-leaves. Plant Sci 74(2):261–265. https://doi.org/10.1016/0168-9452(91)90055-d
doi: 10.1016/0168-9452(91)90055-d
Montillet JL, Chamnongpol S, Rusterucci C, Dat J, van de Cotte B, Agnel JP et al (2005) Fatty acid hydroperoxides and H
doi: 10.1104/pp.105.059907
pubmed: 15980200
pmcid: 1176422
Pacheco R, García-Marcos A, Manzano A, de Lacoba MG, Camañes G, García-Agustín P et al (2012) Comparative analysis of transcriptomic and hormonal responses to compatible and incompatible plant-virus interactions that lead to cell death. Mol Plant Microbe Interact 25:709–723
doi: 10.1094/MPMI-11-11-0305
pubmed: 22273391
Pan R, Liu J, Wang S, Hu J (2020) Peroxisomes: versatile organelles with diverse roles in plants. New Phytol 225(4):1410–1427. https://doi.org/10.1111/nph.16134
doi: 10.1111/nph.16134
pubmed: 31442305
Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69
doi: 10.3389/fpls.2015.00069
pubmed: 25741354
pmcid: 4332301
Piau M, Schmitt-Keichinger C (2023) The Hypersensitive Response to Plant Viruses. Viruses. https://doi.org/10.3390/v15102000
doi: 10.3390/v15102000
pubmed: 37896777
pmcid: 10612061
Qiu Y, Zhang Y, Wang C, Lei R, Wu Y, Li X et al (2018) Cucumber mosaic virus coat protein induces the development of chlorotic symptoms through interacting with the chloroplast ferredoxin I protein. Sci Rep 8(1):1205. https://doi.org/10.1038/s41598-018-19525-5
doi: 10.1038/s41598-018-19525-5
pubmed: 29352213
pmcid: 5775247
Qiu S, Chen X, Zhai Y, Cui W, Ai X, Rao S et al (2021) Downregulation of light-harvesting complex II induces ROS-mediated defense against turnip mosaic virus infection in Nicotiana benthamiana. Front Microbiol 12:690988. https://doi.org/10.3389/fmicb.2021.690988
doi: 10.3389/fmicb.2021.690988
pubmed: 34290685
pmcid: 8287655
Rahoutei J, García-Luque I, Barón M (2000) Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiol Plant 110:286–292
doi: 10.1034/j.1399-3054.2000.110220.x
Riedle-Bauer M (2000) Role of reactive oxygen species and antioxidant enzymes in systemic virus Infections of plants. J Phytopathol 148(5):297–302. https://doi.org/10.1046/j.1439-0434.2000.00503.x
doi: 10.1046/j.1439-0434.2000.00503.x
Rossetti S, Bonatti PM (2001) In situ histochemical monitoring of ozone- and TMV-induced reactive oxygen species in tobacco leaves. Plant Physiol Biochem 39:433–442. https://doi.org/10.1016/S0981-9428(01)01250-5
doi: 10.1016/S0981-9428(01)01250-5
Sacharz J, Giovagnetti V, Ungerer P, Mastroianni G, Ruban AV (2017) The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Nat Plants 3:16225. https://doi.org/10.1038/nplants.2016.225
doi: 10.1038/nplants.2016.225
pubmed: 28134919
Shang J, Xi D-H, Yuan S, Xu F, Xu M-Y, Qi H-L et al (2010) Difference of physiological characters in dark green islands and yellow leaf tissue of cucumber mosaic virus (CMV)-infected Nicotiana tabacum leaves. Zeitschrift Für Naturforschung C 65(1–2):73–78
doi: 10.1515/znc-2010-1-213
Sharma R, Verma S (2019) Environment-pathogen interaction in plant diseases. Agric Rev 40(3):192–199
Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21(7):363–383. https://doi.org/10.1038/s41580-020-0230-3
doi: 10.1038/s41580-020-0230-3
pubmed: 32231263
Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221(3):1197–1214. https://doi.org/10.1111/nph.15488
doi: 10.1111/nph.15488
pubmed: 30222198
Sofy AR, Dawoud RA, Sofy MR, Mohamed HI, Hmed AA, El-Dougdoug NK (2020) Improving regulation of enzymatic and non-enzymatic antioxidants and stress-related gene stimulation in cucumber mosaic cucumovirus-infected cucumber plants treated with glycine betaine, chitosan and combination. Molecules. https://doi.org/10.3390/molecules25102341
doi: 10.3390/molecules25102341
pubmed: 32429524
pmcid: 7288169
Song XS, Wang YJ, Mao WH, Shi K, Zhou YH, Nogues S et al (2009) Effects of cucumber mosaic virus infection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves. Physiol Plant 135(3):246–257. https://doi.org/10.1111/j.1399-3054.2008.01189.x
doi: 10.1111/j.1399-3054.2008.01189.x
pubmed: 19140890
Song X, Li Y, Cao X, Qi Y (2019) MicroRNAs and Their Regulatory Roles in Plant-Environment Interactions. Annu Rev Plant Biol 70:489–525. https://doi.org/10.1146/annurev-arplant-050718-100334
doi: 10.1146/annurev-arplant-050718-100334
pubmed: 30848930
Sun YD, Folimonova SY (2019) The p33 protein of citrus tristeza virus affects viral pathogenicity by modulating a host immune response. New Phytol 221(4):2039–2053. https://doi.org/10.1111/nph.15482
doi: 10.1111/nph.15482
pubmed: 30220089
Tibiletti T, Auroy P, Peltier G, Caffarri S (2016) Chlamydomonas reinhardtii PsbS protein Is functional and accumulates rapidly and transiently under high light. Plant Physiol 171(4):2717–2730. https://doi.org/10.1104/pp.16.00572
doi: 10.1104/pp.16.00572
pubmed: 27329221
pmcid: 4972282
Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141(2):384–390. https://doi.org/10.1104/pp.106.078295
doi: 10.1104/pp.106.078295
pubmed: 16760492
pmcid: 1475453
Wang X, Jiang Z, Yue N, Jin X, Zhang X, Li Z et al (2021) Barley stripe mosaic virus γb protein disrupts chloroplast antioxidant defenses to optimize viral replication. EMBO J 40:e107660. https://doi.org/10.15252/embj.2021107660
doi: 10.15252/embj.2021107660
pubmed: 34254679
pmcid: 8365260
Waszczak C, Carmody M, Kangasjarvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236. https://doi.org/10.1146/annurev-arplant-042817-040322
doi: 10.1146/annurev-arplant-042817-040322
pubmed: 29489394
Wu J, Yang R, Yang Z, Yao S, Zhao S, Wang Y et al (2017) ROS accumulation and antiviral defence control by microRNA528 in rice. Nat Plants 3:16203. https://doi.org/10.1038/nplants.2016.203
doi: 10.1038/nplants.2016.203
pubmed: 28059073
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T et al (2023) Plant virology in the 21st century in China: recent advances and future directions. J Integr Plant Biol. https://doi.org/10.1111/jipb.13580
doi: 10.1111/jipb.13580
pubmed: 37929676
Xie K, Li L, Zhang H, Wang R, Tan X, He Y et al (2018) Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice. Plant Cell Environ 41(10):2504–2514. https://doi.org/10.1111/pce.13372
doi: 10.1111/pce.13372
pubmed: 29920686
Xu YH, Liu R, Yan L, Liu ZQ, Jiang SC, Shen YY et al (2012) Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in arabidopsis. J Exp Bot 63(3):1095–1106. https://doi.org/10.1093/jxb/err315
doi: 10.1093/jxb/err315
pubmed: 22143917
Yang M, Li Z, Zhang K, Zhang X, Zhang Y, Wang X et al (2018) Barley stripe mosaic virus gammab interacts with glycolate oxidase and inhibits peroxisomal ROS production to facilitate virus infection. Mol Plant 11(2):338–341. https://doi.org/10.1016/j.molp.2017.10.007
doi: 10.1016/j.molp.2017.10.007
pubmed: 29066357
Yang X, Li Y, Wang A (2021) Research advances in potyviruses: from the laboratory bench to the field. Annu Rev Phytopathol. https://doi.org/10.1146/annurev-phyto-020620-114550
doi: 10.1146/annurev-phyto-020620-114550
pubmed: 33891829
Yang D, Peng Q, Cheng Y, Xi D (2022) Glucose-6-phosphate dehydrogenase promotes the infection of Chilli veinal mottle virus through affecting ROS signaling in Nicotiana benthamiana. Planta 256(5):96. https://doi.org/10.1007/s00425-022-04010-1
doi: 10.1007/s00425-022-04010-1
pubmed: 36217064
Yang J, Chen L, Zhang J, Liu P, Chen M, Chen Z et al (2023) TaTHI2 interacts with Ca(2+)-dependent protein kinase TaCPK5 to suppress virus infection by regulating ROS accumulation. Plant Biotechnol J. https://doi.org/10.1111/pbi.14270
doi: 10.1111/pbi.14270
pubmed: 38100262
pmcid: 11022809
Yoda H, Yamaguchi Y, Sano H (2003) Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol 132(4):1973–1981. https://doi.org/10.1104/pp.103.024737
doi: 10.1104/pp.103.024737
pubmed: 12913153
pmcid: 181282
Zhang C, Wu Z, Li Y, Wu J (2015) Biogenesis, function, and applications of Virus-derived small RNAs in plants. Front Microbiol 6:1237. https://doi.org/10.3389/fmicb.2015.01237
doi: 10.3389/fmicb.2015.01237
pubmed: 26617580
pmcid: 4637412
Zhang T, Hu H, Wang Z, Feng T, Yu L, Zhang J et al (2023) Wheat yellow mosaic virus NIb targets TaVTC2 to elicit broad-spectrum pathogen resistance in wheat. Plant Biotechnol J 21(5):1073–1088. https://doi.org/10.1111/pbi.14019
doi: 10.1111/pbi.14019
pubmed: 36715229
pmcid: 10106851
Zhao S, Li Y (2021) Current understanding of the interplays between host hormones and plant viral infections. PLoS Pathog 17(2):e1009242. https://doi.org/10.1371/journal.ppat.1009242
doi: 10.1371/journal.ppat.1009242
pubmed: 33630970
pmcid: 7906326
Zhou S, Hong Q, Li Y, Li Q, Wang M (2018) Autophagy contributes to regulate the ROS levels and PCD progress in TMV-infected tomatoes. Plant Sci 269:12–19. https://doi.org/10.1016/j.plantsci.2017.11.002
doi: 10.1016/j.plantsci.2017.11.002
pubmed: 29606209
Zhu H, Guo H (2012) The role of virus-derived small interfering RNAs in RNA silencing in plants. Sci China Life Sci 55(2):119–125. https://doi.org/10.1007/s11427-012-4281-3
doi: 10.1007/s11427-012-4281-3
pubmed: 22415682
Zhu F, Zhu PX, Xu F, Che YP, Ma YM, Ji ZL (2020) Alpha-momorcharin enhances Nicotiana benthamiana resistance to tobacco mosaic virus infection through modulation of reactive oxygen species. Mol Plant Pathol 21(9):1212–1226. https://doi.org/10.1111/mpp.12974
doi: 10.1111/mpp.12974
pubmed: 32713165
pmcid: 7411664