Role of protein S-nitrosylation in plant growth and development.
Molecular physiology
Nitric oxide
Post-translational modification
Protein S-nitrosylation
Protein interactions
Journal
Plant cell reports
ISSN: 1432-203X
Titre abrégé: Plant Cell Rep
Pays: Germany
ID NLM: 9880970
Informations de publication
Date de publication:
30 Jul 2024
30 Jul 2024
Historique:
received:
26
03
2024
accepted:
19
07
2024
medline:
31
7
2024
pubmed:
31
7
2024
entrez:
30
7
2024
Statut:
epublish
Résumé
In plants, nitric oxide (NO) has been widely accepted as a signaling molecule that plays a role in different processes. Among the most relevant pathways by which NO and its derivatives realize their biological functions, post-translational protein modifications are worth mentioning. Protein S-nitrosylation has been the most studied NO-dependent regulatory mechanism; it is emerging as an essential mechanism for transducing NO bioactivity in plants and animals. In recent years, the research of protein S-nitrosylation in plant growth and development has made significant progress, including processes such as seed germination, root development, photosynthetic regulation, flowering regulation, apoptosis, and plant senescence. In this review, we focus on the current state of knowledge on the role of S-nitrosylation in plant growth and development and provide a better understanding of its action mechanisms.
Identifiants
pubmed: 39080060
doi: 10.1007/s00299-024-03290-z
pii: 10.1007/s00299-024-03290-z
doi:
Substances chimiques
Nitric Oxide
31C4KY9ESH
Plant Proteins
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
204Subventions
Organisme : National Natural Science Foundation of China
ID : Nos. 32360743
Organisme : National Natural Science Foundation of China
ID : 32072559
Organisme : National Natural Science Foundation of China
ID : 31560563
Organisme : National Natural Science Foundation of China
ID : 31860568
Organisme : Key Research and Development Program of Gansu Province, China
ID : No. 21YF5WA096
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Albertos P, Romero-Puertas MC, Tatematsu K, Mateos I, Sánchez-Vicente I, Nambara E, Lorenzo O (2015) S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat Commun 6(1):8669
pubmed: 26493030
doi: 10.1038/ncomms9669
Astier J, Gross I, Durner J (2018) Nitric oxide production in plants: an update. J Exp Bot 69(14):3401–3411
pubmed: 29240949
doi: 10.1093/jxb/erx420
Astier J, Rossi J, Chatelain P, Klinguer A, Besson-Bard A, Rosnoblet C, Jeandroz S, Nicolas-Francès V, Wendehenne D (2021) Nitric oxide production and signalling in algae. J Exp Bot 72(3):781–792
pubmed: 32910824
doi: 10.1093/jxb/eraa421
Bai X, Yang L, Tian M, Chen J, Shi J, Yang Y, Hu X (2011) Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS ONE 6(6):e20714
pubmed: 21674063
pmcid: 3107241
doi: 10.1371/journal.pone.0020714
Belenghi B, Romero-Puertas MC, Vercammen D, Brackenier A, Inzé D, Delledonne M, Van Breusegem F (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282(2):1352–1358
pubmed: 17110382
doi: 10.1074/jbc.M608931200
Berger HD, Mia M, Morisse S, Marchand CH, Lemaire SD, Wobbe L, Kruse O (2016) A light switch based on protein S-nitrosylation fine-tunes photosynthetic light harvesting in Chlamydomonas. Plant Physiol 171(2):821–832
pubmed: 27208221
pmcid: 4902583
Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39
pubmed: 18031216
doi: 10.1146/annurev.arplant.59.032607.092830
Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341
pubmed: 14742874
pmcid: 341907
doi: 10.1105/tpc.017822
Bhatia V, Elnagary L, Dakshinamurti S (2021) Tracing the path of inhaled nitric oxide: Biological consequences of protein nitrosylation. Pediatr Pulmonol 56(2):525–538
pubmed: 33289321
doi: 10.1002/ppul.25201
Borrowman S, Kapuganti JG, Loake GJ (2023) Expanding roles for S-nitrosylation in the regulation of plant immunity. Free Radical Biol Med 194:357–368
doi: 10.1016/j.freeradbiomed.2022.12.009
Bortolotti M, Polito L, Battelli MG, Bolognesi A (2021) Xanthine oxidoreductase: one enzyme for multiple physiological tasks. Redox Biol 41:101882
pubmed: 33578127
pmcid: 7879036
doi: 10.1016/j.redox.2021.101882
Chakraborty S, Sircar E, Bhattacharyya C, Choudhuri A, Mishra A, Dutta S, Bhatta S, Sachin K, Sengupta R (2022) S-denitrosylation: a crosstalk between glutathione and redoxin systems. Antioxidants 11(10):1921
pubmed: 36290644
pmcid: 9598160
doi: 10.3390/antiox11101921
Chen R, Sun S, Wang C, Li Y, Liang Y, An F, Li C, Dong H, Yang X, Zhang J, Zuo J (2009) The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Research 19(12):1377–1387. https://doi.org/10.1038/cr.2009.117
doi: 10.1038/cr.2009.117
pubmed: 19806166
Chen L, Wu R, Feng J, Feng T, Wang C, Hu J, Zhan N, Li Y, Ma X, Ren B (2020) Transnitrosylation mediated by the non-canonical catalase ROG1 regulates nitric oxide signaling in plants. Dev Cell 53(4):444–457
pubmed: 32330424
doi: 10.1016/j.devcel.2020.03.020
Chen J, Liu L, Wang W, Gao H (2022) Nitric oxide, nitric oxide formers and their physiological impacts in bacteria. Int J Mol Sci 23(18):10778
pubmed: 36142682
pmcid: 9500659
doi: 10.3390/ijms231810778
Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, León AM, Sandalio LM, Del Río LA (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254
pubmed: 16397797
doi: 10.1007/s00425-005-0205-9
Cueto M, Hernández-Perera O, Martín R, Bentura ML, Rodrigo J, Lamas S, Golvano MP (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398(2–3):159–164
pubmed: 8977098
doi: 10.1016/S0014-5793(96)01232-X
de Pinto MC, Locato V, Sgobba A, Romero-Puertas MDC, Gadaleta C, Delledonne M, De Gara L (2013) S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco bright yellow-2 cells. Plant Physiol 163(4):1766–1775
pubmed: 24158396
pmcid: 3846137
doi: 10.1104/pp.113.222703
Duan Q, Liu MJ, Kita D, Jordan SS, Yeh FJ, Yvon R, Carpenter H, Federico AN, Garcia-Valencia LE, Eyles SJ (2020) FERONIA controls pectin-and nitric oxide-mediated male–female interaction. Nature 579(7800):561–566
pubmed: 32214247
doi: 10.1038/s41586-020-2106-2
El-Maarouf-Bouteau H (2022) The seed and the metabolism regulation. Biology 11(2):168
pubmed: 35205035
pmcid: 8869448
doi: 10.3390/biology11020168
Feechan A, Kwon E, Yun B-W, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci 102(22):8054–8059. https://doi.org/10.1073/pnas.0501456102
doi: 10.1073/pnas.0501456102
pubmed: 15911759
pmcid: 1142375
Feng J, Wang C, Chen Q, Chen H, Ren B, Li X, Zuo J (2013) S-nitrosylation of phosphotransfer proteins represses cytokinin signaling. Nat Commun 4(1):1529
pubmed: 23443557
doi: 10.1038/ncomms2541
Feng J, Chen L, Zuo J (2019) Protein S-nitrosylation in plants: current progresses and challenges. J Integr Plant Biol 61(12):1206–1223
pubmed: 30663237
doi: 10.1111/jipb.12780
Fernando V, Zheng X, Walia Y, Sharma V, Letson J, Furuta S (2019) S-nitrosylation: an emerging paradigm of redox signaling. Antioxidants 8(9):404
pubmed: 31533268
pmcid: 6769533
doi: 10.3390/antiox8090404
Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422(6930):442–446
pubmed: 12660786
doi: 10.1038/nature01485
Foresi N, Correa-Aragunde N, Parisi G, Calo G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22(11):3816–3830
pubmed: 21119059
pmcid: 3015112
doi: 10.1105/tpc.109.073510
Furuta S (2017) Basal S-nitrosylation is the guardian of tissue homeostasis. Trends Cancer 3(11):744–748
pubmed: 29120749
doi: 10.1016/j.trecan.2017.09.003
Gong B, Yan Y, Zhang L, Cheng F, Liu Z, Shi Q (2019) Unravelling GSNOR-mediated S-nitrosylation and multiple developmental programs in tomato plants. Plant Cell Physiol 60(11):2523–2537
pubmed: 31350547
doi: 10.1093/pcp/pcz143
Gupta KJ, Kumari A, Florez-Sarasa I, Fernie AR, Igamberdiev AU (2018) Interaction of nitric oxide with the components of the plant mitochondrial electron transport chain. J Exp Bot 69(14):3413–3424
pubmed: 29590433
doi: 10.1093/jxb/ery119
Gupta KJ, Kaladhar VC, Fitzpatrick TB, Fernie AR, Møller IM, Loake GJ (2022) Nitric oxide regulation of plant metabolism. Mol Plant 15(2):228–242
pubmed: 34971792
doi: 10.1016/j.molp.2021.12.012
Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, Takahashi M, Cheah JH, Tankou SK, Hester LD (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7(7):665–674
pubmed: 15951807
doi: 10.1038/ncb1268
He Y, Xue H, Li Y, Wang X (2018) Nitric oxide alleviates cell death through protein S-nitrosylation and transcriptional regulation during the ageing of elm seeds. J Exp Bot 69(21):5141–5155
pubmed: 30053069
pmcid: 6184755
doi: 10.1093/jxb/ery270
He T, Xie D, Ni J, Li Z, Li Z (2020) Nitrous oxide produced directly from ammonium, nitrate and nitrite during nitrification and denitrification. J Hazard Mater 388:122114
pubmed: 31962213
doi: 10.1016/j.jhazmat.2020.122114
Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J (2015) Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol 167(4):1731–1746
pubmed: 25699590
pmcid: 4378176
doi: 10.1104/pp.15.00026
Huang D, Huo J, Zhang J, Wang C, Wang B, Fang H, Liao W (2019) Protein S-nitrosylation in programmed cell death in plants. Cell Mol Life Sci 76:1877–1887
pubmed: 30783684
pmcid: 11105606
doi: 10.1007/s00018-019-03045-0
Huang J, Yang L, Yang L, Wu X, Cui X, Zhang L, Hui J, Zhao Y, Yang H, Liu S (2023) Stigma receptors control intraspecies and interspecies barriers in Brassicaceae. Nature 614(7947):303–308
pubmed: 36697825
pmcid: 9908550
doi: 10.1038/s41586-022-05640-x
Hussain A, Shah F, Ali F, Yun B (2022) Role of nitric oxide in plant senescence. Front Plant Sci 13:851631
pubmed: 35463429
pmcid: 9022112
doi: 10.3389/fpls.2022.851631
Jahnová J, Luhová L, Petřivalský M (2019) S-nitrosoglutathione reductase—the master regulator of protein S-nitrosation in plant NO signaling. Plants 8(2):48
pubmed: 30795534
pmcid: 6409631
doi: 10.3390/plants8020048
Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GK, Wendehenne D (2016) Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom. Sci Signal. https://doi.org/10.1126/scisignal.aad4403
doi: 10.1126/scisignal.aad4403
pubmed: 26933064
Jing H, Yang X, Emenecker RJ, Feng J, de Zhang J, Figueiredo MRA, Chaisupa P, Wright RC, Holehouse AS, Strader LC (2023) Nitric oxide-mediated S-nitrosylation of IAA17 protein in intrinsically disordered region represses auxin signaling. J Genetics Genomics 50(7):473–485
doi: 10.1016/j.jgg.2023.05.001
Kalinina E, Novichkova M (2021) Glutathione in protein redox modulation through S-glutathionylation and S-nitrosylation. Molecules 26(2):435
pubmed: 33467703
pmcid: 7838997
doi: 10.3390/molecules26020435
Kawabe H, Ohtani M, Kurata T, Sakamoto T, Demura T (2018) Protein S-nitrosylation regulates xylem vessel cell differentiation in Arabidopsis. Plant Cell Physiol 59(1):17–29
pubmed: 29040725
doi: 10.1093/pcp/pcx151
Kim D (2020) Current understanding of flowering pathways in plants: focusing on the vernalization pathway in Arabidopsis and several vegetable crop plants. Hortic Environ Biotechnol 61(2):209–227
doi: 10.1007/s13580-019-00218-5
Kneeshaw S, Gelineau S, Tada Y, Loake GJ, Spoel SH (2014) Selective protein denitrosylation activity of thioredoxin-h5 modulates plant immunity. Mol Cell 56:153–162
pubmed: 25201412
doi: 10.1016/j.molcel.2014.08.003
Kwon E, Feechan A, Yun B, Hwang B, Pallas JA, Kang J, Loake GJ (2012) AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta 236:887–900
pubmed: 22767201
doi: 10.1007/s00425-012-1697-8
Li B, Sun C, Lin X, Busch W (2021) The emerging role of GSNOR in oxidative stress regulation. Trends Plant Sci 26(2):156–168
pubmed: 33004257
doi: 10.1016/j.tplants.2020.09.004
Li F, Ma Y, Yi Y, Ren M, Li L, Chen Y, Li A, Han S, Tang H, Jia H (2023) Nitric oxide induces S-nitrosylation of CESA1 and CESA9 and increases cellulose content in Arabidopsis hypocotyls. Plant Physiol Biochem 196:1–9
pubmed: 36680948
doi: 10.1016/j.plaphy.2023.01.032
Liao W, Huang G, Yu J, Zhang M, Shi X (2011) Nitric oxide and hydrogen peroxide are involved in indole-3-butyric acid-induced adventitious root development in marigold. J Hortic Sci Biotechnol 86(2):159–165
doi: 10.1080/14620316.2011.11512742
Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake GJ, Chu C (2012) Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158(1):451–464
pubmed: 22106097
doi: 10.1104/pp.111.184531
Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137(3):921–930
pubmed: 15734904
pmcid: 1065393
doi: 10.1104/pp.104.058719
Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol 183(4):1030–1042
pubmed: 19522839
doi: 10.1111/j.1469-8137.2009.02899.x
Liu J, Duan J, Ni M, Liu Z, Qiu W, Whitham SA, Qian W (2017) S-Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1). J Biol Chem 292(48):19743–19751
pubmed: 28972151
pmcid: 5712615
doi: 10.1074/jbc.M117.803882
Liu M, Zhang H, Fang X, Zhang Y, Jin C (2018) Auxin acts downstream of ethylene and nitric oxide to regulate magnesium deficiency-induced root hair development in Arabidopsis thaliana. Plant Cell Physiol 59(7):1452–1465
pubmed: 29669031
Liu L, Huang L, Sun C, Wang L, Jin C, Lin X (2021) Cross-talk between hydrogen peroxide and nitric oxide during plant development and responses to stress. J Agric Food Chem 69(33):9485–9497
pubmed: 34428901
doi: 10.1021/acs.jafc.1c01605
Lombardo MC, Graziano M, Polacco JC, Lamattina L (2006) Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behav 1(1):28–33
pubmed: 19521473
pmcid: 2633697
doi: 10.4161/psb.1.1.2398
Ma L, Yang L, Zhao J, Wei J, Kong X, Wang C, Zhang X, Yang Y, Hu X (2015) Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant Lamiophlomis rotata to altitude gradient in the Northern Tibetan Plateau. Planta 241:887–906
pubmed: 25526962
doi: 10.1007/s00425-014-2209-9
Machchhu F, Wany A (2023) Protein S-nitrosylation in plants under biotic stress. Theor Exp Plant Physiol 35(4):331–339
doi: 10.1007/s40626-023-00289-x
Mao C, Zhu Y, Cheng H, Yan H, Zhao L, Tang J, Ma X, Mao P (2018) Nitric oxide regulates seedling growth and mitochondrial responses in aged oat seeds. Int J Mol Sci 19(4):1052
pubmed: 29614792
pmcid: 5979601
doi: 10.3390/ijms19041052
Massa CM, Liu Z, Taylor S, Pettit AP, Stakheyeva MN, Korotkova E, Popova V, Atochina-Vasserman EN, Gow AJ (2021) Biological mechanisms of S-nitrosothiol formation and degradation: how is specificity of S-nitrosylation achieved? Antioxidants 10(7):1111
pubmed: 34356344
pmcid: 8301044
doi: 10.3390/antiox10071111
Mata-Pérez C, Spoel SH (2019) Thioredoxin-mediated redox signalling in plant immunity. Plant Sci 279:27–33
pubmed: 30709489
doi: 10.1016/j.plantsci.2018.05.001
Mattioli EJ, Rossi J, Meloni MD, Mia M, Marchand CH, Tagliani A, Fanti S, Falini G, Trost P, Lemaire SD (2022) Structural snapshots of nitrosoglutathione binding and reactivity underlying S-nitrosylation of photosynthetic GAPDH. Redox Biol 54:102387
pubmed: 35793584
pmcid: 9287727
doi: 10.1016/j.redox.2022.102387
Mnatsakanyan R, Markoutsa S, Walbrunn K, Roos A, Verhelst SH, Zahedi RP (2019) Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linker-based enrichment and switch technique. Nat Commun 10(1):2195
pubmed: 31097712
pmcid: 6522481
doi: 10.1038/s41467-019-10182-4
Napieraj N, Reda M, Janicka M (2020) The role of NO in plant response to salt stress: interactions with polyamines. Funct Plant Biol 47(10):865–879
pubmed: 32522331
doi: 10.1071/FP19047
Niu L, Yu J, Liao W, Xie J, Yu J, Lv J, Xiao X, Hu L, Wu Y (2019) Proteomic investigation of S-nitrosylated proteins during NO-induced adventitious rooting of cucumber. Int J Mol Sci 20(21):5363
pubmed: 31661878
pmcid: 6862188
doi: 10.3390/ijms20215363
Ohtani M, Kawabe H, Demura T (2018) Evidence that thiol-based redox state is critical for xylem vessel cell differentiation. Plant Signal Behav 13(4):e1428512
pubmed: 29393823
pmcid: 5933917
doi: 10.1080/15592324.2018.1428512
Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129(3):954–956
pubmed: 12114551
pmcid: 1540240
doi: 10.1104/pp.004036
Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132(3):1241–1248
pubmed: 12857806
pmcid: 167064
doi: 10.1104/pp.103.022228
Pan C, Li X, Yao S, Luo S, Liu S, Wang A, Xiao D, Zhan J, He L (2021) S-nitrosated proteomic analysis reveals the regulatory roles of protein S-nitrosation and S-nitrosoglutathione reductase during Al-induced PCD in peanut root tips. Plant Sci 308:110931
pubmed: 34034861
doi: 10.1016/j.plantsci.2021.110931
Pardue S, Kolluru GK, Shen X, Lewis SE, Saffle CB, Kelley EE, Kevil CG (2020) Hydrogen sulfide stimulates xanthine oxidoreductase conversion to nitrite reductase and formation of NO. Redox Biol 34:101447
pubmed: 32035920
pmcid: 7327988
doi: 10.1016/j.redox.2020.101447
Planchet E, Kaiser WM (2006) Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: a comparison using abiotic and biotic NO sources. J Exp Bot 57(12):3043–3055
pubmed: 16893978
doi: 10.1093/jxb/erl070
Priestley J ((1774) Experiments and observations on different kinds of air, vol 2. J. Johnson
Qi H, Xia FN, Xiao S (2021) Autophagy in plants: physiological roles and post-translational regulation. J Integr Plant Biol 63(1):161–179
pubmed: 32324339
doi: 10.1111/jipb.12941
Rasmusson AG, Escobar MA, Hao M, Podgórska A, Szal B (2020) Mitochondrial NAD (P) H oxidation pathways and nitrate/ammonium redox balancing in plants. Mitochondrion 53:158–165
pubmed: 32485334
doi: 10.1016/j.mito.2020.05.010
Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz K, Delledonne M (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19(12):4120–4130
pubmed: 18165327
pmcid: 2217656
doi: 10.1105/tpc.107.055061
Sanchez-Corrionero A, Sánchez-Vicente I, Arteaga N, Manrique-Gil I, Gómez-Jiménez S, Torres-Quezada I, Albertos P, Lorenzo O (2023) Fine-tuned nitric oxide and hormone interface in plant root development and regeneration. J Exp Bot 74(19):6104–6118
pubmed: 36548145
doi: 10.1093/jxb/erac508
Seth D, Hess DT, Hausladen A, Wang L, Wang Y, Stamler JS (2018) A multiplex enzymatic machinery for cellular protein S-nitrosylation. Mol Cell 69(3):451–464
pubmed: 29358078
pmcid: 5999318
doi: 10.1016/j.molcel.2017.12.025
Shi M, Wang C, Wang P, Yun F, Liu Z, Ye F, Wei L, Liao W (2023) Role of methylation in vernalization and photoperiod pathway: a potential flowering regulator? Hortic Res 10(10):uhad174
pubmed: 37841501
pmcid: 10569243
doi: 10.1093/hr/uhad174
Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78(6):931–936
pubmed: 7923362
doi: 10.1016/0092-8674(94)90269-0
Stamler JS, Toone EJ, Lipton SA, Sucher NJ (1997) (S) NO signals: translocation, regulation, and a consensus motif. Neuron 18(5):691–696
pubmed: 9182795
doi: 10.1016/S0896-6273(00)80310-4
Stomberski CT, Hess DT, Stamler JS (2019) Protein S-nitrosylation: determinants of specificity and enzymatic regulation of S-nitrosothiol-based signaling. Antioxid Redox Signal 30(10):1331–1351
pubmed: 29130312
pmcid: 6391618
doi: 10.1089/ars.2017.7403
Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321(5891):952–956
pubmed: 18635760
doi: 10.1126/science.1156970
Terrile MC, París RC, Villalobos LI, Iglesias MJ, Lamattina L, Estelle M, Casalongué CA (2012) Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor. Plant J 70(3):492–500
pubmed: 22171938
pmcid: 3324642
doi: 10.1111/j.1365-313X.2011.04885.x
Timilsina A, Dong W, Hasanuzzaman M, Liu B, Hu C (2022) Nitrate–nitrite–nitric oxide pathway: a mechanism of hypoxia and anoxia tolerance in plants. Int J Mol Sci 23(19):11522
pubmed: 36232819
pmcid: 9569746
doi: 10.3390/ijms231911522
Treffon P, Vierling E (2022) Focus on nitric oxide homeostasis: direct and indirect enzymatic regulation of protein denitrosation reactions in plants. Antioxidants 11(7):1411
pubmed: 35883902
pmcid: 9311986
doi: 10.3390/antiox11071411
Vogelsang L, Dietz K (2022) Plant thiol peroxidases as redox sensors and signal transducers in abiotic stress acclimation. Free Radical Biol Med. https://doi.org/10.1016/j.freeradbiomed.2022.11.019
doi: 10.1016/j.freeradbiomed.2022.11.019
Wang P, Du Y, Hou Y, Zhao Y, Hsu C, Yuan F, Zhu X, Tao WA, Song C, Zhu J (2015a) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci 112(2):613–618
pubmed: 25550508
doi: 10.1073/pnas.1423481112
Wang P, Zhu J, Lang Z (2015b) Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins. Plant Signal Behav 10(6):e1031939
pubmed: 26024299
pmcid: 4622540
doi: 10.1080/15592324.2015.1031939
Wang J, Wang Y, Lv Q, Wang L, Du J, Bao F, He Y (2017) Nitric oxide modifies root growth by S-nitrosylation of plastidial glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 488(1):88–94
pubmed: 28478036
doi: 10.1016/j.bbrc.2017.05.012
Wei B, Zhang W, Chao J, Zhang T, Zhao T, Noctor G, Liu Y, Han Y (2017) Functional analysis of the role of hydrogen sulfide in the regulation of dark-induced leaf senescence in Arabidopsis. Sci Rep 7(1):2615
pubmed: 28572670
pmcid: 5454012
doi: 10.1038/s41598-017-02872-0
Wei L, Zhang M, Wei S, Zhang J, Wang C, Liao W (2020) Roles of nitric oxide in heavy metal stress in plants: cross-talk with phytohormones and protein S-nitrosylation. Environ Pollut 259:113943
pubmed: 32023797
doi: 10.1016/j.envpol.2020.113943
Wu G, Meininger CJ, McNeal CJ, Bazer FW, Rhoads JM (2021) Role of L-arginine in nitric oxide synthesis and health in humans. In: Guoyao Wu (ed) Amino acids in nutrition and health: amino acids in gene expression metabolic regulation and exercising performance. Springer International Publishing, Cham, pp 167–187
doi: 10.1007/978-3-030-74180-8_10
Yan Y, Shi Q, Gong B (2021) S-nitrosoglutathione reductase-mediated nitric oxide affects axillary buds outgrowth of Solanum lycopersicum L. by regulating auxin and cytokinin signaling. Plant Cell Physiol 62(3):458–471
pubmed: 33493306
doi: 10.1093/pcp/pcab002
Yang Y, Huang Z, Li L (2021) Advanced nitric oxide donors: chemical structure of NO drugs. NO Nanomedi Biomed Appl Nanoscale 13(2):444–459
Ye H, Wu J, Liang Z, Zhang Y, Huang Z (2022) Protein S-nitrosation: biochemistry, identification, molecular mechanisms, and therapeutic applications. J Med Chem 65(8):5902–5925
pubmed: 35412827
doi: 10.1021/acs.jmedchem.1c02194
Ying S, Yang W, Li P, Hu Y, Lu S, Zhou Y, Huang J, Hancock JT, Hu X (2022) Phytochrome B enhances seed germination tolerance to high temperature by reducing S-nitrosylation of HFR1. EMBO Rep 23(10):e54371
pubmed: 36062942
pmcid: 9535752
doi: 10.15252/embr.202154371
Yu Z, Cao J, Zhu S, Zhang L, Peng Y, Shi J (2020) Exogenous nitric oxide enhances disease resistance by nitrosylation and inhibition of S-nitrosoglutathione reductase in peach fruit. Front Plant Sci 11:543
pubmed: 32670301
pmcid: 7326068
doi: 10.3389/fpls.2020.00543
Yun B, Feechan A, Yin M, Saidi NBL, Bihan T, Yu M, Moore JW, Kang J, Kwon E, Spoel SH (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478(7368):264–268
pubmed: 21964330
doi: 10.1038/nature10427
Zeng M, He Y, Gao X, Wang Y, Deng S, Ye T, Wang X, Xue H (2021) Characteristics and functions of glyceraldehyde 3-phosphate dehydrogenase S-nitrosylation during controlled aging of elm and Arabidopsis seeds. J Exp Bot 72(20):7020–7034
pubmed: 34244712
doi: 10.1093/jxb/erab322
Zhan N, Wang C, Chen L, Yang H, Feng J, Gong X, Ren B, Wu R, Mu J, Li Y (2018) S-nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Mol Cell 71(1):142–154
pubmed: 30008318
doi: 10.1016/j.molcel.2018.05.024
Zhang ZW, Luo S, Zhang GC, Feng LY, Zheng C, Zhou YH, Du JB, Yuan M, Chen YE, Wang CQ (2017) Nitric oxide induces monosaccharide accumulation through enzyme S-nitrosylation. Plant Cell Environ 40(9):1834–1848
pubmed: 28556250
doi: 10.1111/pce.12989
Zhang J, Huang D, Wang C, Wang B, Fang H, Huo J, Liao W (2019) Recent progress in protein S-nitrosylation in phytohormone signaling. Plant Cell Physiol 60(3):494–502
pubmed: 30668813
doi: 10.1093/pcp/pcz012
Zhang Y, Deng Y, Yang X, Xue H, Lang Y (2020) The relationship between protein S-Nitrosylation and human diseases: a review. Neurochem Res 45:2815–2827
pubmed: 32984933
doi: 10.1007/s11064-020-03136-6
Zhang K, Zhang Y, Sun J, Meng J, Tao J (2021) Deterioration of orthodox seeds during ageing: influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiol Biochem 158:475–485
pubmed: 33250322
doi: 10.1016/j.plaphy.2020.11.031
Zhang J, Liao W (2022) Roles of S-nitrosylation in abiotic stress tolerance in plants. Nitric oxide in plant biology. Elsevier, pp 453–475
doi: 10.1016/B978-0-12-818797-5.00015-7
Zhao H, Ma L, Shen J, Zhou H, Zheng Y (2023) S-nitrosylation of the transcription factor MYB30 facilitates nitric oxide–promoted seed germination in Arabidopsis. Plant Cell 36(2):367–382
doi: 10.1093/plcell/koad276
Zhou H, Xie Y (2023) Recent progress in oxidative stress signaling and response in plants. Biotechnol Bull 39(11):36