Coming of age for Microbiome gene breeding in plants.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
05 Aug 2024
Historique:
received: 29 01 2024
accepted: 18 07 2024
medline: 6 8 2024
pubmed: 6 8 2024
entrez: 5 8 2024
Statut: epublish

Résumé

The plant microbiota can complement host functioning, leading to improved growth and health under unfavorable conditions. Microbiome engineering could therefore become a transformative technique for crop production. Microbiome genes, abbreviated as M genes, provide valuable targets for shaping plant-associated microbial communities.

Identifiants

pubmed: 39103326
doi: 10.1038/s41467-024-50700-7
pii: 10.1038/s41467-024-50700-7
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

6623

Informations de copyright

© 2024. The Author(s).

Références

Richardson, K. et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 9, eadh2458 (2023).
doi: 10.1126/sciadv.adh2458 pubmed: 37703365 pmcid: 10499318
Stam, R. & McDonald, B. A. When resistance gene pyramids are not durable—the role of pathogen diversity. Mol. Plant Pathol. 19, 521 (2018).
doi: 10.1111/mpp.12636 pubmed: 29446883 pmcid: 6637985
Matsumoto, H. et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 7, 60–72 (2021).
doi: 10.1038/s41477-020-00826-5 pubmed: 33398157
Jurburg, S. D. et al. Potential of microbiome-based solutions for agrifood systems. Nat. Food 3, 557–560 (2022).
doi: 10.1038/s43016-022-00576-x pubmed: 37118595
Zhan, C., Matsumoto, H., Liu, Y. & Wang, M. Pathways to engineering the phyllosphere microbiome for sustainable crop production. Nat. Food 3, 997–1004 (2022).
doi: 10.1038/s43016-022-00636-2 pubmed: 37118297
O’Banion, B. S. et al. Plant inositol transport influences bacterial colonization phenotypes. Curr. Biol. 33, 3111–3124 (2023).
doi: 10.1016/j.cub.2023.06.057 pubmed: 37419115
Stringlis, I. A., De Jonge, R. & Pieterse, C. M. The age of coumarins in plant–microbe interactions. Plant Cell Physiol. 60, 1405–1419 (2019).
doi: 10.1093/pcp/pcz076 pubmed: 31076771 pmcid: 6915228
Su, P. et al. Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis. Nat. Commun. 15, 23 (2024).
doi: 10.1038/s41467-023-44335-3 pubmed: 38167850 pmcid: 10762202
Xu, P. et al. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. J. Adv. Res. 39, 49–60 (2022).
doi: 10.1016/j.jare.2021.10.003 pubmed: 35777916
He, X. et al. Heritable microbiome variation is correlated with source environment in locally adapted maize varieties. Nat. Plants 10, 598–617 (2024).
doi: 10.1038/s41477-024-01654-7 pubmed: 38514787
Wintermans, P. C., Bakker, P. A. & Pieterse, C. M. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Mol. Biol. 90, 623–634 (2016).
doi: 10.1007/s11103-016-0442-2 pubmed: 26830772 pmcid: 4819784
Beckers, B. et al. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. Proc. Natl Acad. Sci. USA 113, 2312–2317 (2016).
doi: 10.1073/pnas.1523264113 pubmed: 26755604 pmcid: 4776533
Stringlis, I. A. et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl Acad. Sci.USA 115, E5213–E5222 (2018).
doi: 10.1073/pnas.1722335115 pubmed: 29686086 pmcid: 5984513
Escudero-Martinez, C. et al. Identifying plant genes shaping microbiota composition in the barley rhizosphere. Nat. Commun. 13, 3443 (2022).
doi: 10.1038/s41467-022-31022-y pubmed: 35710760 pmcid: 9203816
Oyserman, B. O. et al. Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nat. Commun. 13, 3228 (2022).
doi: 10.1038/s41467-022-30849-9 pubmed: 35710629 pmcid: 9203511
Escudero-Martinez, C. & Bulgarelli, D. Engineering the crop microbiota through host genetics. Annu. Rev. Phytopathol. 61, 257–277 (2023).
doi: 10.1146/annurev-phyto-021621-121447 pubmed: 37196364
Sasse, J., Martinoia, E. & Northen, T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 23, 25–41 (2018).
doi: 10.1016/j.tplants.2017.09.003 pubmed: 29050989
Njaci, I. et al. Chromosome-level genome assembly and population genomic resource to accelerate orphan crop lablab breeding. Nat. Commun. 14, 1915 (2023).
doi: 10.1038/s41467-023-37489-7 pubmed: 37069152 pmcid: 10110558
Shorinola, O. et al. Integrative and inclusive genomics to promote the use of underutilised crops. Nat. Commun. 15, 320 (2024).
doi: 10.1038/s41467-023-44535-x pubmed: 38191605 pmcid: 10774273

Auteurs

Tomislav Cernava (T)

School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK. t.cernava@soton.ac.uk.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Lakes Salinity Archaea Bacteria Microbiota
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases

Classifications MeSH