Biogas potential of organosolv pretreated wheat straw as mono and co-substrate: substrate synergy and microbial dynamics.
Anaerobic digestion
Bio-fertilizer
Bioammonium
Co-fermentation
Organosolv pretreatment
Wheat straw
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
08 Aug 2024
08 Aug 2024
Historique:
received:
04
12
2023
accepted:
29
07
2024
medline:
9
8
2024
pubmed:
9
8
2024
entrez:
8
8
2024
Statut:
epublish
Résumé
Anaerobic digestion (AD) technology can potentially address the gap between energy demand and supply playing a crucial role in the production of sustainable energy from utilization of biogenic waste materials as feedstock. The biogas production from anaerobic digestion is primarily influenced by the chemical compositions and biodegradability of the feedstock. Organosolv-steam explosion offers a constructive approach as a promising pretreatment method for the fractionation of lignocellulosic biomasses delivering high cellulose content.This study showed how synergetic co-digestion serves to overcome the challenges of mono-digestion's low efficiency. Particularly, the study evaluated the digestibility of organosolv-steam pretreated wheat straw (WS
Identifiants
pubmed: 39117660
doi: 10.1038/s41598-024-68904-8
pii: 10.1038/s41598-024-68904-8
doi:
Substances chimiques
Biofuels
0
Methane
OP0UW79H66
Lignin
9005-53-2
lignocellulose
11132-73-3
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
18442Informations de copyright
© 2024. The Author(s).
Références
Errera, M. R., Dias, T. A. D. C., Maya, D. M. Y. & Lora, E. E. S. Global bioenergy potentials projections for 2050. Biomass Bioenergy 170, 106721 (2023).
doi: 10.1016/j.biombioe.2023.106721
Ulukardesler, A. H. Anaerobic co-digestion of grass and cow manure: Kinetic and GHG calculations. Sci. Rep. 13, 6320 (2023).
doi: 10.1038/s41598-023-33169-0
Khantibongse, P. & Ratanatamskul, C. Insight into pathway of monosaccharide production from integrated enzymatic hydrolysis of rice straw waste as feed stock for anaerobic digestion. Sci. Rep. 13, 148 (2023).
doi: 10.1038/s41598-023-27398-6
Wang, F., Wang, J., Li, Z., Liu, M. & Wu, D. Fed-batch processing of algae hydrothermal carbonization process water improves anaerobic digestion and digestate nutrient content. Biomass Bioenergy 170, 106729 (2023).
doi: 10.1016/j.biombioe.2023.106729
Ponsá, S., Gea, T. & Sánchez, A. Anaerobic co-digestion of the organic fraction of municipal solid waste with several pure organic co-substrates. Biosyst. Eng. 108, 352–360 (2011).
doi: 10.1016/j.biosystemseng.2011.01.007
Dahiya, S., Sarkar, O., Swamy, Y. V. V. & Venkata Mohan, S. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour. Technol. 182, 103–113 (2015).
doi: 10.1016/j.biortech.2015.01.007
Sarkar, O., Chatterjee, S., Mohan, S. V., da Silva, G. A. & Kulay, L. A. Acidogenic outlet from biohydrogen reactor as phosphate solubilizing agent for integrated organic farming. J. Clean. Prod. 208, 490–498 (2019).
doi: 10.1016/j.jclepro.2018.09.213
Mata-Alvarez, J. et al. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 36, 412–427 (2014).
doi: 10.1016/j.rser.2014.04.039
Karki, R. et al. Anaerobic co-digestion: Current status and perspectives. Bioresour. Technol. 330, 125001 (2021).
doi: 10.1016/j.biortech.2021.125001
Maragkaki, A. E., Fountoulakis, M., Kyriakou, A., Lasaridi, K. & Manios, T. Boosting biogas production from sewage sludge by adding small amount of agro-industrial by-products and food waste residues. Waste Manag. 71, 605–611 (2018).
doi: 10.1016/j.wasman.2017.04.024
Sarkar, O., Rova, U., Christakopoulos, P. & Matsakas, L. Green hydrogen and platform chemicals production from acidogenic conversion of brewery spent grains co-fermented with cheese whey wastewater: Adding value to acidogenic CO
doi: 10.1039/D1SE01691A
Chow, W. L. et al. Anaerobic co-digestion of wastewater sludge: A review of potential co-substrates and operating factors for improved methane yield. Processes 8, 39 (2020).
doi: 10.3390/pr8010039
Shah, F. A. et al. Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew. Sustain. Energy Rev. 42, 627–642 (2015).
doi: 10.1016/j.rser.2014.10.053
Zhou, H. et al. Feeding control of anaerobic co-digestion of waste activated sludge and corn silage performed by rule-based PID control with ADM1. Waste Manag. 103, 22–31 (2020).
doi: 10.1016/j.wasman.2019.12.021
Zhen, G. et al. Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: Performance assessment and kinetic analysis. Appl. Energy 148, 78–86 (2015).
doi: 10.1016/j.apenergy.2015.03.038
Szögi, A. A., Vanotti, M. B. & Stansbery, A. E. Reduction of ammonia emissions from treated anaerobic swine lagoons. Trans. ASABE 49, 217–225 (2006).
doi: 10.13031/2013.20241
Deng, Z., van Linden, N., Guillen, E., Spanjers, H. & van Lier, J. B. Recovery and applications of ammoniacal nitrogen from nitrogen-loaded residual streams: A review. J. Environ. Manag. 295, 113096 (2021).
doi: 10.1016/j.jenvman.2021.113096
Sarkar, O., Rova, U., Christakopoulos, P. & Matsakas, L. Effect of metals on the regulation of acidogenic metabolism enhancing biohydrogen and carboxylic acids production from brewery spent grains: Microbial dynamics and biochemical analysis. Eng. Life Sci. n/a, (2022).
Zilio, M. et al. Using highly stabilized digestate and digestate-derived ammonium sulphate to replace synthetic fertilizers: The effects on soil, environment, and crop production. Sci. Total Environ. 815, 152919 (2022).
doi: 10.1016/j.scitotenv.2022.152919
Usmani, Z. et al. Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context. Renew. Sustain. Energy Rev. 131, 109965 (2020).
doi: 10.1016/j.rser.2020.109965
Sharma, N., Allardyce, B. J., Rajkhowa, R. & Agrawal, R. Rice straw-derived cellulose: A comparative study of various pre-treatment technologies and its conversion to nanofibres. Sci. Rep. 13, 16327 (2023).
doi: 10.1038/s41598-023-43535-7
Matsakas, L. et al. Lignin-first biomass fractionation using a hybrid organosolv—Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresour. Technol. 273, 521–528 (2019).
doi: 10.1016/j.biortech.2018.11.055
Matsakas, L. et al. A novel hybrid organosolv: Steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnol. Biofuels 11, 160 (2018).
doi: 10.1186/s13068-018-1163-3
Matsakas, L., Sarkar, O., Jansson, S., Rova, U. & Christakopoulos, P. A novel hybrid organosolv-steam explosion pretreatment and fractionation method delivers solids with superior thermophilic digestibility to methane. Bioresour. Technol. 316, 123973 (2020).
doi: 10.1016/j.biortech.2020.123973
Hrůzová, K., Matsakas, L., Rova, U. & Christakopoulos, P. Organosolv fractionation of spruce bark using ethanol–water mixtures: Towards a novel bio-refinery concept. Bioresour. Technol. 341, 125855 (2021).
doi: 10.1016/j.biortech.2021.125855
Amplicon, P. C. R., Clean-Up, P. C. R. & Index, P. C. R. 16S Metagenomic Sequencing Library Preparation (Illumina San Diego, 2013).
Bertacchi, S., Jayaprakash, P., Morrissey, J. P. & Branduardi, P. Interdependence between lignocellulosic biomasses, enzymatic hydrolysis and yeast cell factories in biorefineries. Microb. Biotechnol. 15, 985–995 (2022).
doi: 10.1111/1751-7915.13886
Vivekanand, V., Mulat, D. G., Eijsink, V. G. H. & Horn, S. J. Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresour. Technol. 249, 35–41 (2018).
doi: 10.1016/j.biortech.2017.09.169
Abdallah, M., Greige, S., Beyenal, H., Harb, M. & Wazne, M. Investigating microbial dynamics and potential advantages of anaerobic co-digestion of cheese whey and poultry slaughterhouse wastewaters. Sci. Rep. 12, 10529 (2022).
doi: 10.1038/s41598-022-14425-1
Jasko, J., Skripsts, E., Dubrovskis, V., Zabarovskis, E. & Kotelenecs, V. Biogas production from cheese whey in two phase anaerobic digestion. Eng. Rural Dev. 26, 373–376 (2011).
Wu, Y.-D., Xue, C., Chen, L.-J., Wan, H.-H. & Bai, F.-W. Transcriptional analysis of micronutrient zinc-associated response for enhanced carbohydrate utilization and earlier solventogenesis in Clostridium acetobutylicum. Sci. Rep. 5, 16598 (2015).
doi: 10.1038/srep16598
Pandey, A., Srivastava, S., Rai, P. & Duke, M. Cheese whey to biohydrogen and useful organic acids: A non-pathogenic microbial treatment by L. acidophilus. Sci. Rep. 9, 8320 (2019).
doi: 10.1038/s41598-019-42752-3
Mshandete, A., Kivaisi, A., Rubindamayugi, M. & Mattiasson, B. O. Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresour. Technol. 95, 19–24 (2004).
doi: 10.1016/j.biortech.2004.01.011
Itodo, I. N. & Awulu, J. O. Effects of total solids concentrations of poultry, cattle, and piggerywaste slurries on biogas yield. Trans. ASAE 42, 1853–1856 (1999).
doi: 10.13031/2013.13350
Chen, Y., Cheng, J. J. & Creamer, K. S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 99, 4044–4064 (2008).
doi: 10.1016/j.biortech.2007.01.057
Wang, X., Lu, X., Li, F. & Yang, G. Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: Focusing on ammonia inhibition. PLoS One 9, e97265 (2014).
doi: 10.1371/journal.pone.0097265
Yan, Z. et al. The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw. Bioresour. Technol. 177, 266–273 (2015).
doi: 10.1016/j.biortech.2014.11.089
Babson, D. M., Bellman, K., Prakash, S. & Fennell, D. E. Anaerobic digestion for methane generation and ammonia reforming for hydrogen production: A thermodynamic energy balance of a model system to demonstrate net energy feasibility. Biomass Bioenergy 56, 493–505 (2013).
doi: 10.1016/j.biombioe.2013.05.024
Vince, A. J. & Burridge, S. M. Ammonia production by intestinal bacteria: The effects of lactose, lactulose and glucose. J. Med. Microbiol. 13, 177–191 (1980).
doi: 10.1099/00222615-13-2-177
Yenigün, O. & Demirel, B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 48, 901–911 (2013).
doi: 10.1016/j.procbio.2013.04.012
Menkveld, H. W. H. & Broeders, E. Recovery of ammonia from digestate as fertilizer. Water Pract. Technol. 13, 382–387 (2018).
doi: 10.2166/wpt.2018.049
de Baere, L. A., Devocht, M., Van Assche, P. & Verstraete, W. Influence of high NaCl and NH
doi: 10.1016/0043-1354(84)90201-X
Webb, A. R. & Hawkes, F. R. The anaerobic digestion of poultry manure: Variation of gas yield with influent concentration and ammonium-nitrogen levels. Agric. Wastes 14, 135–156 (1985).
doi: 10.1016/S0141-4607(85)80025-1
Maas, R. M. et al. Exogenous enzymes and probiotics alter digestion kinetics, volatile fatty acid content and microbial interactions in the gut of Nile tilapia. Sci. Rep. 11, 8221 (2021).
doi: 10.1038/s41598-021-87408-3
Saheb-Alam, S., Persson, F., Wilén, B.-M., Hermansson, M. & Modin, O. A variety of hydrogenotrophic enrichment cultures catalyse cathodic reactions. Sci. Rep. 9, 2356 (2019).
doi: 10.1038/s41598-018-38006-3
Kannaiah Goud, R. et al. Regulation of biohydrogen production by heat-shock pretreatment facilitates selective enrichment of Clostridium sp.. Int. J. Hydrog. Energy 39, 7572–7586 (2014).
doi: 10.1016/j.ijhydene.2013.10.046
Harirchi, S. et al. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. Bioengineered 13, 6521–6557 (2022).
doi: 10.1080/21655979.2022.2035986
Amin, F. R. et al. Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production. Sci. Total Environ. 763, 143007 (2021).
doi: 10.1016/j.scitotenv.2020.143007
Yang, Z., Wang, W., He, Y., Zhang, R. & Liu, G. Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions. Renew. Energy 125, 915–925 (2018).
doi: 10.1016/j.renene.2018.03.032
Jiang, M. et al. Balancing acidogenesis and methanogenesis metabolism in thermophilic anaerobic digestion of food waste under a high loading rate. Sci. Total Environ. 824, 153867 (2022).
doi: 10.1016/j.scitotenv.2022.153867
Mladenovska, Z., Dabrowski, S. & Ahring, B. K. Anaerobic digestion of manure and mixture of manure with lipids: Biogas reactor performance and microbial community analysis. Water Sci. Technol. 48, 271–278 (2003).
doi: 10.2166/wst.2003.0412
Palatsi, J., Viñas, M., Guivernau, M., Fernandez, B. & Flotats, X. Anaerobic digestion of slaughterhouse waste: Main process limitations and microbial community interactions. Bioresour. Technol. 102, 2219–2227 (2011).
doi: 10.1016/j.biortech.2010.09.121
Ali, S. et al. Effect of different initial low pH conditions on biogas production, composition, and shift in the aceticlastic methanogenic population. Bioresour. Technol. 289, 121579 (2019).
doi: 10.1016/j.biortech.2019.121579
Kim, Y. M. et al. Changes in bacterial and archaeal communities in anaerobic digesters treating different organic wastes. Chemosphere 141, 134–137 (2015).
doi: 10.1016/j.chemosphere.2015.06.086
Deng, Y. et al. Enriching ruminal polysaccharide-degrading consortia via co-inoculation with methanogenic sludge and microbial mechanisms of acidification across lignocellulose loading gradients. Appl. Microbiol. Biotechnol. 102, 3819–3830 (2018).
doi: 10.1007/s00253-018-8877-9