Neural correlates of proactive avoidance deficits and alcohol use motives in problem drinking.
Humans
Male
Female
Motivation
/ physiology
Magnetic Resonance Imaging
Avoidance Learning
/ physiology
Adult
Young Adult
Alcoholism
/ physiopathology
Alcohol Drinking
/ psychology
Emotions
/ physiology
Pain
/ physiopathology
Brain
/ diagnostic imaging
Insular Cortex
/ physiopathology
Putamen
/ physiopathology
Brain Mapping
Journal
Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664
Informations de publication
Date de publication:
21 Aug 2024
21 Aug 2024
Historique:
received:
03
02
2024
accepted:
24
07
2024
revised:
22
07
2024
medline:
22
8
2024
pubmed:
22
8
2024
entrez:
21
8
2024
Statut:
epublish
Résumé
Physical pain and negative emotions represent two distinct drinking motives that contribute to harmful alcohol use. Proactive avoidance, in contrast, can reduce consumption in response to these motives but appears to be impaired in those with problem drinking. Despite such evidence, proactive avoidance and its underlying neural deficits have not been assessed experimentally. How these deficits inter-relate with drinking motives to influence alcohol use also remains unclear. The current study leveraged neuroimaging data in forty-one problem and forty-one social drinkers who performed a probabilistic learning go/nogo task featuring proactive avoidance of painful outcomes. We identified the brain responses to proactive avoidance and contrasted the neural correlates of drinking to avoid negative emotions vs. physical pain. Behavioral results confirmed proactive avoidance deficits in problem drinking individuals' learning rate and performance accuracy, both which were associated with greater alcohol use. Imaging findings in the problem drinking group showed that negative emotions as a drinking motive predicted attenuated right anterior insula activation during proactive avoidance. In contrast, physical pain motive predicted reduced right putamen response. These regions' activations as well as functional connectivity with the somatomotor cortex also demonstrated a negative relationship with drinking severity and positive relationship with proactive avoidance performance. Path modeling further delineated the pathways through which physical pain and negative emotions influenced the neural and behavioral measures of proactive avoidance. Taken together, the current findings provide experimental evidence for proactive avoidance deficits in alcohol misuse and establish the link between their neural underpinnings and drinking behavior.
Identifiants
pubmed: 39168986
doi: 10.1038/s41398-024-03039-y
pii: 10.1038/s41398-024-03039-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
336Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAAA)
ID : K99AA029716
Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse (NIDA)
ID : R01AG072893
Informations de copyright
© 2024. The Author(s).
Références
Moos RH, Brennan PL, Fondacaro MR, Moos BS. Approach and avoidance coping responses among older problem and nonproblem drinkers. Psychol Aging. 1990;5:31–40.
pubmed: 2180432
doi: 10.1037/0882-7974.5.1.31
Hasking P, Lyvers M, Carlopio C. The relationship between coping strategies, alcohol expectancies, drinking motives and drinking behaviour. Addict Behav. 2011;36:479–87.
pubmed: 21300441
doi: 10.1016/j.addbeh.2011.01.014
Townshend JM, Duka T. Avoidance of alcohol-related stimuli in alcohol-dependent inpatients. Alcohol Clin Exp Res. 2007;31:1349–57.
pubmed: 17550367
doi: 10.1111/j.1530-0277.2007.00429.x
Stormark KM, Field NP, Hugdahl K, Horowitz M. Selective processing of visual alcohol cues in abstinent alcoholics: an approach-avoidance conflict? Addict Behav. 1997;22:509–19.
pubmed: 9290860
doi: 10.1016/S0306-4603(96)00051-2
Chung T, Langenbucher J, Labouvie E, Pandina RJ, Moos RH. Changes in alcoholic patients’ coping responses predict 12-month treatment outcomes. J Consult Clin Psychol. 2001;69:92–100.
pubmed: 11302282
doi: 10.1037/0022-006X.69.1.92
Brevers D, Bechara A, Kilts CD, Antoniali V, Bruylant A, Verbanck P, et al. Competing motivations: proactive response inhibition toward addiction-related stimuli in quitting-motivated individuals. J Gambl Stud. 2018;34:785–806.
pubmed: 29067545
doi: 10.1007/s10899-017-9722-2
Kim DY, Lee JH. The effects of training to reduce automatic action tendencies toward alcohol using the virtual alcohol approach-avoidance task in heavy social drinkers. Cyberpsychol Behav Soc Netw. 2019;22:794–8.
pubmed: 31794239
doi: 10.1089/cyber.2019.0121
Yusko DA, Buckman JF, White HR, Pandina RJ. Risk for excessive alcohol use and drinking-related problems in college student athletes. Addict Behav. 2008;33:1546–56.
pubmed: 18752900
pmcid: 2642959
doi: 10.1016/j.addbeh.2008.07.010
Smit K, Voogt C, Otten R, Kleinjan M, Kuntsche E. Why adolescents engage in early alcohol use: a study of drinking motives. Exp Clin Psychopharmacol. 2022;30:73–81.
pubmed: 32881557
doi: 10.1037/pha0000383
Cooper ML, Frone MR, Russell M, Mudar P. Drinking to regulate positive and negative emotions: a motivational model of alcohol use. J Pers Soc Psychol. 1995;69:990–1005.
pubmed: 7473043
doi: 10.1037/0022-3514.69.5.990
Patrick ME, Lee CM, Larimer ME. Drinking motives, protective behavioral strategies, and experienced consequences: Identifying students at risk. Addict Behav. 2011;36:270–3.
pubmed: 21159445
doi: 10.1016/j.addbeh.2010.11.007
Grazioli VS, Dillworth T, Witkiewitz K, Andersson C, Kilmer JR, Pace T, et al. Protective behavioral strategies and future drinking behaviors: effect of drinking intentions. Psychol Addict Behav. 2015;29:355–64.
pubmed: 25642586
doi: 10.1037/adb0000041
Alden LE. Behavioral self-management controlled-drinking strategies in a context of secondary prevention. J Consult Clin Psychol. 1988;56:280–6.
pubmed: 3372836
doi: 10.1037/0022-006X.56.2.280
Riley JL, King C. Self-report of alcohol use for pain in a multi-ethnic community sample. J Pain. 2009;10:944–52.
pubmed: 19712901
pmcid: 2734914
doi: 10.1016/j.jpain.2009.03.005
Brennan PL, Schutte KK, Moos RH. Pain and use of alcohol to manage pain: prevalence and 3-year outcomes among older problem and non-problem drinkers. Addiction. 2005;100:777–86.
pubmed: 15918808
doi: 10.1111/j.1360-0443.2005.01074.x
Witkiewitz K, McCallion E, Vowles KE, Kirouac M, Frohe T, Maisto SA, et al. Association between physical pain and alcohol treatment outcomes: the mediating role of negative affect. J Consult Clin Psychol. 2015;83:1044–57.
pubmed: 26098375
pmcid: 4658287
doi: 10.1037/ccp0000033
Jakubczyk A, Ilgen MA, Kopera M, Krasowska A, Klimkiewicz A, Bohnert A, et al. Reductions in physical pain predict lower risk of relapse following alcohol treatment. Drug Alcohol Depend. 2016;158:167–71.
pubmed: 26653340
doi: 10.1016/j.drugalcdep.2015.11.020
Karyadi KA, King KM. Urgency and negative emotions: Evidence for moderation on negative alcohol consequences. Pers Individ Dif. 2011;51:635–40.
doi: 10.1016/j.paid.2011.05.030
Kushner MG, Abrams K, Thuras P, Hanson KL, Brekke M, Sletten S. Follow-up study of anxiety disorder and alcohol dependence in comorbid alcoholism treatment patients. Alcohol Clin Exp Res. 2005;29:1432–43.
pubmed: 16131851
doi: 10.1097/01.alc.0000175072.17623.f8
Witkiewitz K, Villarroel NA. Dynamic association between negative affect and alcohol lapses following alcohol treatment. J Consult Clin Psychol. 2009;77:633–44.
pubmed: 19634957
pmcid: 2911993
doi: 10.1037/a0015647
Sheu R, Lussier D, Rosenblum A, Fong C, Portenoy J, Joseph H, et al. Prevalence and characteristics of chronic pain in patients admitted to an outpatient drug and alcohol treatment program. Pain Med. 2008;9:911–7.
pubmed: 18346064
doi: 10.1111/j.1526-4637.2008.00420.x
Kassel JD, Jackson SI, Unrod M. Generalized expectancies for negative mood regulation and problem drinking among college students. J Stud Alcohol. 2000;61:332–40.
pubmed: 10757145
doi: 10.15288/jsa.2000.61.332
Lumley MA, Cohen JL, Borszcz GS, Cano A, Radcliffe AM, Porter LS, et al. Pain and emotion: A biopsychosocial review of recent research. J Clin Psychol. 2011;67:942–68.
pubmed: 21647882
pmcid: 3152687
doi: 10.1002/jclp.20816
Saga Y, Ruff CC, Tremblay L. Disturbance of approach‐avoidance behaviors in non‐human primates by stimulation of the limbic territories of basal ganglia and anterior insula. Eur J Neurosci. 2019;49:687–700.
pubmed: 30307650
doi: 10.1111/ejn.14201
Bingel U, Gläscher J, Weiller C, Büchel C. Somatotopic representation of nociceptive information in the putamen: An event-related fMRI study. Cereb Cortex. 2004;14:1340–5.
pubmed: 15217895
doi: 10.1093/cercor/bhh094
Kalivas PW, Barnes CD. Limbic motor circuits and neuropsychiatry. 2019. CRC Press.
Starr CJ, Sawaki L, Wittenberg GF, Burdette JH, Oshiro Y, Quevedo AS, et al. The contribution of the putamen to sensory aspects of pain: Insights from structural connectivity and brain lesions. Brain. 2011;134:1987–2004.
pubmed: 21616963
pmcid: 3122370
doi: 10.1093/brain/awr117
Jensen KB, Regenbogen C, Ohse MC, Frasnelli J, Freiherr J, Lundström JN. Brain activations during pain: a neuroimaging meta-analysis of patients with pain and healthy controls. Pain. 2016;157:1279–86.
pubmed: 26871535
doi: 10.1097/j.pain.0000000000000517
Palminteri S, Justo D, Jauffret C, Pavlicek B, Dauta A, Delmaire C, et al. Critical roles for anterior insula and dorsal striatum in punishment-based avoidance learning. Neuron. 2012;76:998–1009.
pubmed: 23217747
doi: 10.1016/j.neuron.2012.10.017
Samanez-Larkin GR, Hollon NG, Carstensen LL, Knutson B. Individual differences in insular sensitivity during loss: Anticipation predict avoidance learning: research report. Psychol Sci. 2008;19:320–3.
pubmed: 18399882
doi: 10.1111/j.1467-9280.2008.02087.x
Rogers-Carter MM, Varela JA, Gribbons KB, Pierce AF, McGoey MT, Ritchey M, et al. Insular cortex mediates approach and avoidance responses to social affective stimuli. Nat Neurosci. 2018;21:404–14.
pubmed: 29379116
pmcid: 6051351
doi: 10.1038/s41593-018-0071-y
Collins KA, Mendelsohn A, Cain CK, Schiller D. Taking action in the face of threat: neural synchronization predicts adaptive coping. J Neurosci. 2014;34:14733–8.
pubmed: 25355225
pmcid: 4212070
doi: 10.1523/JNEUROSCI.2152-14.2014
Schlund MW, Hudgins CD, Magee S, Dymond S. Neuroimaging the temporal dynamics of human avoidance to sustained threat. Behav Brain Res. 2013;257:148–55.
pubmed: 24095880
doi: 10.1016/j.bbr.2013.09.042
Spielberg JM, Miller GA, Warren SL, Engels AS, Crocker LD, Banich MT, et al. A brain network instantiating approach and avoidance motivation. Psychophysiology. 2012;49:1200–14.
pubmed: 22845892
pmcid: 4559331
doi: 10.1111/j.1469-8986.2012.01443.x
Sommer WH, Canals S, Bifone A, Heilig M, Hyytiä P From a systems view to spotting a hidden island: a narrative review implicating insula function in alcoholism. Neuropharmacology. 2022;209. https://doi.org/10.1016/j.neuropharm.2022.108989 .
Bühler M, Mann K. Alcohol and the human brain: a systematic review of different neuroimaging methods. Alcohol Clin Exp Res. 2011;35:1771–93.
pubmed: 21777260
doi: 10.1111/j.1530-0277.2011.01540.x
Grodin EN, Sussman L, Sundby K, Brennan GM, Diazgranados N, Heilig M, et al. Neural correlates of compulsive alcohol seeking in heavy drinkers. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:1022–31.
pubmed: 30143454
Saunders JB, Aasland OG, Babor TF, De La Fuente JR, Grant M. Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption‐II. Addiction. 1993. https://doi.org/10.1111/j.1360-0443.1993.tb02093.x .
Donovan DM, Kivlahan DR, Doyle SR, Longabaugh R, Greenfield SF. Concurrent validity of the Alcohol Use Disorders Identification Test (AUDIT) and AUDIT zones in defining levels of severity among out-patients with alcohol dependence in the COMBINE study. Addiction. 2006;101:1696–704.
pubmed: 17156168
doi: 10.1111/j.1360-0443.2006.01606.x
Nadkarni A, Garber A, Costa S, Wood S, Kumar S, MacKinnon N, et al. Auditing the AUDIT: a systematic review of cut-off scores for the Alcohol Use Disorders Identification Test (AUDIT) in low- and middle-income countries. Drug Alcohol Depend. 2019;202:123–33.
pubmed: 31349205
doi: 10.1016/j.drugalcdep.2019.04.031
Berkowitz AD, Wesley Perkins H. Problem drinking among college students: a review of recent research. J Am Coll Health Assoc. 1986;35:21–28.
doi: 10.1080/07448481.1986.9938960
Dawson DA. Defining risk drinking. Alcohol Res Heal. 2011;34:144–56.
Annis HM, Graham JM, Davis CS. Inventory of Drinking Situations (IDS) users guide. Toronto: Addiction Research Foundation Ontario; 1987.
Kuntsche E, Knibbe R, Gmel G, Engels R. Why do young people drink? A review of drinking motives. Clin Psychol Rev. 2005;25:841–61.
pubmed: 16095785
doi: 10.1016/j.cpr.2005.06.002
Skrzynski CJ, Creswell KG. Associations between solitary drinking and increased alcohol consumption, alcohol problems, and drinking to cope motives in adolescents and young adults: a systematic review and meta-analysis. Addiction. 2020;115:1989–2007.
pubmed: 32196794
pmcid: 8053066
doi: 10.1111/add.15055
Zale EL, Maisto SA, Ditre JW. Interrelations between pain and alcohol: Aan integrative review. Clin Psychol Rev. 2015;37:57–71.
pubmed: 25766100
pmcid: 4385458
doi: 10.1016/j.cpr.2015.02.005
Guitart-Masip M, Huys QJM, Fuentemilla L, Dayan P, Duzel E, Dolan RJ. Go and no-go learning in reward and punishment: Interactions between affect and effect. Neuroimage. 2012;62:154–66.
pubmed: 22548809
doi: 10.1016/j.neuroimage.2012.04.024
Oba T, Katahira K, Ohira H. The effect of reduced learning ability on avoidance in psychopathy: a computational approach. Front Psychol. 2019;10:1–15.
doi: 10.3389/fpsyg.2019.02432
Le TM, Oba T, Couch L, McInerney L, Li CR. The neural correlates of individual differences in reinforcement learning during pain avoidance and reward seeking. eNeuro. 2024;11:ENEURO.0437–23.2024.
pubmed: 38365840
doi: 10.1523/ENEURO.0437-23.2024
Guitart-Masip M, Economides M, Huys QJM, Frank MJ, Chowdhury R, Duzel E, et al. Differential, but not opponent, effects of l-DOPA and citalopram on action learning with reward and punishment. Psychopharmacology. 2014;231:955–66.
pubmed: 24232442
doi: 10.1007/s00213-013-3313-4
Cazé RD, van der Meer MAA. Adaptive properties of differential learning rates for positive and negative outcomes. Biol Cybern. 2013;107:711–9.
pubmed: 24085507
doi: 10.1007/s00422-013-0571-5
Huys QJM, Cools R, Gölzer M, Friedel E, Heinz A, Dolan RJ, et al. Disentangling the roles of approach, activation and valence in instrumental and pavlovian responding. PLoS Comput Biol. 2011;7. https://doi.org/10.1371/journal.pcbi.1002028 .
Woo CW, Krishnan A, Wager TD. Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. Neuroimage. 2014;91:412–9.
pubmed: 24412399
doi: 10.1016/j.neuroimage.2013.12.058
Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci USA. 2016;113:7900–5.
pubmed: 27357684
pmcid: 4948312
doi: 10.1073/pnas.1602413113
McLaren DG, Ries ML, Xu G, Johnson SC. A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches. Neuroimage. 2012;61:1277–86.
pubmed: 22484411
doi: 10.1016/j.neuroimage.2012.03.068
Le TM, Zhornitsky S, Zhang S, Li C-SR. Pain and reward circuits antagonistically modulate alcohol expectancy to regulate drinking. Transl Psychiatry. 2020;10:220.
pubmed: 32636394
pmcid: 7341762
doi: 10.1038/s41398-020-00909-z
Schlund MW, Magee S, Hudgins CD. Human avoidance and approach learning: evidence for overlapping neural systems and experiential avoidance modulation of avoidance neurocircuitry. Behav Brain Res. 2011;225:437–48.
pubmed: 21840340
doi: 10.1016/j.bbr.2011.07.054
Aupperle RL, Melrose AJ, Francisco A, Paulus MP, Stein MB. Neural substrates of approach-avoidance conflict decision-making. Hum Brain Mapp. 2015;36:449–62.
pubmed: 25224633
doi: 10.1002/hbm.22639
Eisenberger NI. Social pain and the brain: controversies, questions, and where to go from here. Annu Rev Psychol. 2015;66:601–29.
pubmed: 25251482
doi: 10.1146/annurev-psych-010213-115146
Iannetti GD, Salomons TV, Moayedi M, Mouraux A, Davis KD. Beyond metaphor: contrasting mechanisms of social and physical pain. Trends Cogn Sci. 2013;17:371–8.
pubmed: 23796880
doi: 10.1016/j.tics.2013.06.002
Le TM, Wang W, Zhornitsky S, Dhingra I, Chen Y, Zhang S, et al. The neural processes interlinking social isolation, social support, and problem alcohol use. Int J Neuropsychopharmacol. 2021;24:333–43.
pubmed: 33211853
doi: 10.1093/ijnp/pyaa086
Streiner DL. Finding our way: An introduction to path analysis. Can J Psychiatry. 2005;50:115–22.
pubmed: 15807228
doi: 10.1177/070674370505000207
Hu L-T, Bentler PM. Evaluating model fit. Structural equation modeling: concepts, issues, and applications. Thousand Oaks, CA, USA: Sage Publications, Inc; 1995. p. 76–99.
Chen F, Curran PJ, Bollen KA, Kirby J, Paxton P. An empirical evaluation of the use of fixed cutoff points in RMSEA test statistic in structural equation models. Sociol Methods Res. 2008;36:462–94.
pubmed: 19756246
pmcid: 2743032
doi: 10.1177/0049124108314720
Rosseel Y. Lavaan: an R package for structural equation modeling and more. J Stat Softw. 2012;48:1–36.
doi: 10.18637/jss.v048.i02
Labouvie E, Bates ME. Reasons for alcohol use in young adulthood: validation of a three-dimensional measure. J Stud Alcohol. 2002;63:145–55.
pubmed: 12033691
doi: 10.15288/jsa.2002.63.145
Litt MD, Kadden RM, Cooney NL, Kabela E. Coping skills and treatment outcomes in cognitive-behavioral and interactional group therapy for alcoholism. J Consult Clin Psychol. 2003;71:118–28.
pubmed: 12602432
doi: 10.1037/0022-006X.71.1.118
McCabe CT, Roesch SC, Aldridge-Gerry AA. ‘Have a drink, you’ll feel better.’ Predictors of daily alcohol consumption among extraverts: The mediational role of coping. Anxiety, Stress Coping. 2013;26:121–35.
pubmed: 22313495
doi: 10.1080/10615806.2012.657182
Feil J, Hasking P. The relationship between personality, coping strategies and alcohol use. Addict Res Theory. 2008;16:526–37.
doi: 10.1080/16066350802025714
McCreary DR, Sadava SW. Stress, drinking, and the adverse consequences of drinking in two samples of young adults. Psychol Addict Behav. 1998;12:247–61.
doi: 10.1037/0893-164X.12.4.247
Moser AE, Annis HM. The role of coping in relapse crisis outcome: a prospective study of treated alcoholics. Addiction. 1996;91:1101–14.
pubmed: 8828239
doi: 10.1046/j.1360-0443.1996.91811013.x
Hofmann SG, Hay AC. Rethinking avoidance: Toward a balanced approach to avoidance in treating anxiety disorders. J Anxiety Disord. 2018;55:14–21.
pubmed: 29550689
pmcid: 5879019
doi: 10.1016/j.janxdis.2018.03.004
Kushner MG, Abrams K, Borchardt C. The relationship between anxiety disorders and alcohol use disorders: A review of major perspectives and findings. Clin Psychol Rev. 2000;20:149–71.
pubmed: 10721495
doi: 10.1016/S0272-7358(99)00027-6
Navratilova E, Porreca F. Reward and motivation in pain and pain relief. Nat Neurosci. 2014;17:1304–12.
pubmed: 25254980
pmcid: 4301417
doi: 10.1038/nn.3811
Noworyta K, Cieslik A, Rygula R. Reinforcement‐based cognitive biases as vulnerability factors in alcohol addiction: From humans to animal models. Br J Pharmacol. 2022;179:4265–80.
pubmed: 34232505
doi: 10.1111/bph.15613
Paelecke-Habermann Y, Paelecke M, Mauth J, Tschisgale J, Lindenmeyer J, Kübler A. A comparison of implicit and explicit reward learning in low risk alcohol users versus people who binge drink and people with alcohol dependence. Addict Behav Reports. 2019;9:100178.
doi: 10.1016/j.abrep.2019.100178
Tolomeo S, Baldacchino A.Steele JD, Blunted expected reward value signals in binge alcohol drinkers. J Neurosci. 2023;43:JN-RM-2157-21..
Jokisch D, Roser P, Juckel G, Daum I, Bellebaum C. Impairments in learning by monetary rewards and alcohol-associated rewards in detoxified alcoholic patients. Alcohol Clin Exp Res. 2014;38:1947–54.
pubmed: 24930543
doi: 10.1111/acer.12460
Caria A, Sitaram R, Veit R, Begliomini C, Birbaumer N. Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biol Psychiatry. 2010;68:425–32.
pubmed: 20570245
doi: 10.1016/j.biopsych.2010.04.020
Simmons A, Matthews SC, Stein MB, Paulus MP. Anticipation of emotionally aversive visual stimuli activates right insula. Neuroreport. 2004;15:2261–5.
pubmed: 15371746
doi: 10.1097/00001756-200410050-00024
Duerden EG, Arsalidou M, Lee M, Taylor MJ. Lateralization of affective processing in the insula. Neuroimage. 2013;78:159–75.
pubmed: 23587690
doi: 10.1016/j.neuroimage.2013.04.014
Lamm C, Singer T. The role of anterior insular cortex in social emotions. Brain Struct Funct. 2010;214:579–91.
pubmed: 20428887
doi: 10.1007/s00429-010-0251-3
Kelly C, Toro R, Di Martino A, Cox CL, Bellec P, Castellanos FX, et al. A convergent functional architecture of the insula emerges across imaging modalities. Neuroimage. 2012;61:1129–42.
pubmed: 22440648
doi: 10.1016/j.neuroimage.2012.03.021
Karnath HO, Baier B. Right insula for our sense of limb ownership and self-awareness of actions. Brain Struct Funct. 2010;214:411–7.
pubmed: 20512380
doi: 10.1007/s00429-010-0250-4
Egli M, Koob GF, Edwards S. Alcohol dependence as a chronic pain disorder. Neurosci Biobehav Rev. 2012;36:2179–92.
pubmed: 22975446
pmcid: 3612891
doi: 10.1016/j.neubiorev.2012.07.010
Wiech K, Lin CS, Brodersen KH, Bingel U, Ploner M, Tracey I. Anterior insula integrates information about salience into perceptual decisions about pain. J Neurosci. 2010;30:16324–31.
pubmed: 21123578
pmcid: 6634837
doi: 10.1523/JNEUROSCI.2087-10.2010
Avery JA, Drevets WC, Moseman SE, Bodurka J, Barcalow JC, Simmons WK. Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula. Biol Psychiatry. 2014;76:258–66.
pubmed: 24387823
doi: 10.1016/j.biopsych.2013.11.027
Wiebking C, Bauer A, De Greck M, Duncan NW, Tempelmann C, Northoff G. Abnormal body perception and neural activity in the insula in depression: An fMRI study of the depressed ‘material me’. World J Biol Psychiatry. 2010;11:538–49.
pubmed: 20146653
doi: 10.3109/15622970903563794
Gilman JM, Hommer DW. Modulation of brain response to emotional images by alcohol cues in alcohol-dependent patients. Addict Biol. 2008;13:423–34.
pubmed: 18507736
doi: 10.1111/j.1369-1600.2008.00111.x
Maurage P, Joassin F, Philippot P, Heeren A, Vermeulen N, Mahau P, et al. Disrupted regulation of social exclusion in alcohol-dependence: An fmri study. Neuropsychopharmacology. 2012;37:2067–75.
pubmed: 22510722
pmcid: 3398714
doi: 10.1038/npp.2012.54
Naqvi NH, Gaznick N, Tranel D, Bechara A. The insula: a critical neural substrate for craving and drug seeking under conflict and risk. Ann N Y Acad Sci. 2014;1316. https://doi.org/10.1111/nyas.12415 .
Garavan H. Insula and drug cravings. Brain Struct Funct. 2010;214:593–601.
pubmed: 20512373
doi: 10.1007/s00429-010-0259-8
Ihssen N, Cox WM, Wiggett A, Fadardi JS, Linden DEJ. Differentiating heavy from light drinkers by neural responses to visual alcohol cues and other motivational stimuli. Cereb Cortex. 2011;21:1408–15.
pubmed: 21045002
doi: 10.1093/cercor/bhq220
Bach P, Zaiser J, Zimmermann S, Gessner T, Hoffmann S, Gerhardt S, et al. Stress-induced sensitization of insula activation predicts alcohol craving and alcohol use in alcohol use disorder. Biol Psychiatry. 2023;95:1–11.
Gasquoine PG. Contributions of the insula to cognition and emotion. Neuropsychol Rev. 2014;24:77–87.
pubmed: 24442602
doi: 10.1007/s11065-014-9246-9
Singer T, Critchley HD, Preuschoff K. A common role of insula in feelings, empathy and uncertainty. Trends Cogn Sci. 2009;13:334–40.
pubmed: 19643659
doi: 10.1016/j.tics.2009.05.001
Büchel C, Morris J, Dolan RJ, Friston KJ. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron. 1998;20:947–57.
pubmed: 9620699
doi: 10.1016/S0896-6273(00)80476-6
Nitschke JB, Dixon GE, Sarinopoulos I, Short SJ, Cohen JD, Smith EE, et al. Altering expectancy dampens neural response to aversive taste in primary taste cortex. Nat Neurosci. 2006;9:435–42.
pubmed: 16462735
doi: 10.1038/nn1645
Kuhnen CM, Knutson B. The neural basis of financial risk taking. Neuron. 2005;47:763–70.
pubmed: 16129404
doi: 10.1016/j.neuron.2005.08.008
Paulus MP, Rogalsky C, Simmons A, Feinstein JS, Stein MB. Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. Neuroimage. 2003;19:1439–48.
pubmed: 12948701
doi: 10.1016/S1053-8119(03)00251-9
Droutman V, Read SJ, Bechara A. Revisiting the role of the insula in addiction. Trends Cogn Sci. 2015;19:414–20.
pubmed: 26066588
pmcid: 4486609
doi: 10.1016/j.tics.2015.05.005
Naqvi NH, Bechara A. The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Struct Funct. 2010;214:435–50.
pubmed: 20512364
pmcid: 3698865
doi: 10.1007/s00429-010-0268-7
Xu A, Larsen B, Baller EB, Scott JC, Sharma V, Adebimpe A, et al. Convergent neural representations of experimentally-induced acute pain in healthy volunteers: a large-scale fMRI meta-analysis. Neurosci Biobehav Rev. 2020;112:300–23.
pubmed: 31954149
pmcid: 7755074
doi: 10.1016/j.neubiorev.2020.01.004
Li CM, Zhang DM, Yang CX, Ma X, Gao HR, Zhang D, et al. Acetylcholine plays an antinociceptive role by modulating pain-induced discharges of pain-related neurons in the caudate putamen of rats. Neuroreport. 2014;25:164–70.
pubmed: 24128868
doi: 10.1097/WNR.0000000000000051
Baumgärtner U, Buchholz HG, Bellosevich A, Magerl W, Siessmeier T, Rolke R, et al. High opiate receptor binding potential in the human lateral pain system. Neuroimage. 2006;30:692–9.
pubmed: 16337817
doi: 10.1016/j.neuroimage.2005.10.033
Wey HY, Catana C, Hooker JM, Dougherty DD, Knudsen GM, Wang DJJ, et al. Simultaneous fMRI-PET of the opioidergic pain system in human brain. Neuroimage. 2014;102:275–82.
pubmed: 25107855
doi: 10.1016/j.neuroimage.2014.07.058
Boeke EA, Moscarello JM, LeDoux JE, Phelps EA, Hartley CA. Active avoidance: neural mechanisms and attenuation of pavlovian conditioned responding. J Neurosci. 2017;37:4808–18.
pubmed: 28408411
pmcid: 5426570
doi: 10.1523/JNEUROSCI.3261-16.2017
Schlund MW, Siegle GJ, Ladouceur CD, Silk JS, Cataldo MF, Forbes EE, et al. Nothing to fear? Neural systems supporting avoidance behavior in healthy youths. Neuroimage. 2010;52:710–9.
pubmed: 20430103
doi: 10.1016/j.neuroimage.2010.04.244
Hu J, Lee D, Hu S, Zhang S, Chao H, Li CS. Individual variation in the neural processes of motor decisions in the stop signal task: the influence of novelty seeking and harm avoidance personality traits. Brain Struct Funct. 2016;221:2607–18.
pubmed: 25989852
doi: 10.1007/s00429-015-1061-4
Yamada H, Matsumoto N, Kimura M. Tonically active neurons in the primate caudate nucleus and putamen differentially encode instructed motivational outcomes of action. J Neurosci. 2004;24:3500–10.
pubmed: 15071097
pmcid: 6729748
doi: 10.1523/JNEUROSCI.0068-04.2004
Witkiewitz K, Vowles KE, McCallion E, Frohe T, Kirouac M, Maisto SA. Pain as a predictor of heavy drinking and any drinking lapses in the COMBINE study and the UK Alcohol Treatment Trial. Addiction. 2015;110:1262–71.
pubmed: 25919978
pmcid: 4503502
doi: 10.1111/add.12964
Simons RM, Hahn AM, Simons JS, Murase H. Emotion dysregulation and peer drinking norms uniquely predict alcohol-related problems via motives. Drug Alcohol Depend. 2017;177:54–58.
pubmed: 28558272
doi: 10.1016/j.drugalcdep.2017.03.019
Breiner MJ, Stritzke WGK, Lang AR. Approaching avoidance: a step essential to the understanding of craving. Alcohol Res Heal. 1999;23:197.
Field M, Di Lemma L, Christiansen P, Dickson J. Automatic avoidance tendencies for alcohol cues predict drinking after detoxification treatment in alcohol dependence. Psychol Addict Behav. 2017;31:171–9.
pubmed: 27935726
doi: 10.1037/adb0000232
Cooke DF, Graziano MSA. Sensorimotor integration in the precentral gyrus: polysensory neurons and defensive movements. J Neurophysiol. 2004;91:1648–60.
pubmed: 14586035
doi: 10.1152/jn.00955.2003
Chen LM, Dillenburger BC, Wang F, Friedman RM, Avison MJ. High-resolution functional magnetic resonance imaging mapping of noxious heat and tactile activations along the central sulcus in New World monkeys. Pain. 2011;152:522–32.
pubmed: 21177033
doi: 10.1016/j.pain.2010.10.048
Roy AK, Gotimer K, Kelly AMC, Castellanos FX, Milham MP, Ernst M. Uncovering putative neural markers of risk avoidance. Neuropsychologia. 2011;49:937–44.
pubmed: 21354189
pmcid: 3078166
doi: 10.1016/j.neuropsychologia.2011.02.038
Schlund MW, Cataldo MF. Amygdala involvement in human avoidance, escape and approach behavior. Neuroimage. 2010;53:769–76.
pubmed: 20600966
doi: 10.1016/j.neuroimage.2010.06.058
Barkley-Levenson EE, Van Leijenhorst L, Galván A. Behavioral and neural correlates of loss aversion and risk avoidance in adolescents and adults. Dev Cogn Neurosci. 2013;3:72–83.
pubmed: 23245222
doi: 10.1016/j.dcn.2012.09.007
Siegel P, Wang Z, Murray L, Campos J, Sims V, Leighton E, et al. Brain-based mediation of non-conscious reduction of phobic avoidance in young women during functional MRI: a randomised controlled experiment. The Lancet Psychiatry. 2020;7:971–81.
pubmed: 33069319
doi: 10.1016/S2215-0366(20)30285-6
Bresin K, Mekawi Y. The “why” of drinking matters: a meta‐analysis of the association between drinking motives and drinking outcomes. Alcohol Clin Exp Res. 2021;45:38–50.
pubmed: 33206387
doi: 10.1111/acer.14518