Altered assembly paths mitigate interference among paralogous complexes.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
21 Aug 2024
21 Aug 2024
Historique:
received:
04
03
2024
accepted:
05
08
2024
medline:
22
8
2024
pubmed:
22
8
2024
entrez:
21
8
2024
Statut:
epublish
Résumé
Protein complexes are fundamental to all cellular processes, so understanding their evolutionary history and assembly processes is important. Gene duplication followed by divergence is considered a primary mechanism for diversifying protein complexes. Nonetheless, to what extent assembly of present-day paralogous complexes has been constrained by their long evolutionary pathways and how cross-complex interference is avoided remain unanswered questions. Subunits of protein complexes are often stabilized upon complex formation, whereas unincorporated subunits are degraded. How such cooperative stability influences protein complex assembly also remains unclear. Here, we demonstrate that subcomplexes determined by cooperative stabilization interactions serve as building blocks for protein complex assembly. We further develop a protein stability-guided method to compare the assembly processes of paralogous complexes in cellulo. Our findings support that oligomeric state and the structural organization of paralogous complexes can be maintained even if their assembly processes are rearranged. Our results indicate that divergent assembly processes by paralogous complexes not only enable the complexes to evolve new functions, but also reinforce their segregation by establishing incompatibility against deleterious hybrid assemblies.
Identifiants
pubmed: 39169013
doi: 10.1038/s41467-024-51286-w
pii: 10.1038/s41467-024-51286-w
doi:
Substances chimiques
Multiprotein Complexes
0
Protein Subunits
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7169Subventions
Organisme : Academia Sinica
ID : AS-IA-108-L02; AS-IA-110-L01
Informations de copyright
© 2024. The Author(s).
Références
Pereira-Leal, J. B., Levy, E. D., Kamp, C. & Teichmann, S. A. Evolution of protein complexes by duplication of homomeric interactions. Genome Biol. 8, R51 (2007).
pubmed: 17411433
pmcid: 1895999
doi: 10.1186/gb-2007-8-4-r51
Mallik, S., Tawfik, D. S. & Levy, E. D. How gene duplication diversifies the landscape of protein oligomeric state and function. Curr. Opin. Genet. Dev. 76, 101966 (2022).
pubmed: 36007298
doi: 10.1016/j.gde.2022.101966
Szklarczyk, R., Huynen, M. A. & Snel, B. Complex fate of paralogs. BMC Evol. Biol. 8, 337 (2008).
pubmed: 19094234
pmcid: 2628386
doi: 10.1186/1471-2148-8-337
Mallik, S. & Tawfik, D. S. Determining the interaction status and evolutionary fate of duplicated homomeric proteins. PLoS Comput. Biol. 16, e1008145 (2020).
pubmed: 32853212
pmcid: 7480870
doi: 10.1371/journal.pcbi.1008145
Kuzmin, E., Taylor, J. S. & Boone, C. Retention of duplicated genes in evolution. Trends Genet. 38, 59–72 (2022).
pubmed: 34294428
doi: 10.1016/j.tig.2021.06.016
Mura, C., Randolph, P. S., Patterson, J. & Cozen, A. E. Archaeal and eukaryotic homologs of Hfq: A structural and evolutionary perspective on Sm function. RNA Biol. 10, 636–651 (2013).
pubmed: 23579284
pmcid: 3710371
doi: 10.4161/rna.24538
Scofield, D. G. & Lynch, M. Evolutionary diversification of the Sm family of RNA-associated proteins. Mol. Biol. Evol. 25, 2255–2267 (2008).
pubmed: 18687770
pmcid: 3888151
doi: 10.1093/molbev/msn175
Zhou, M. et al. Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc. Natl Acad. Sci. USA 105, 18139–18144 (2008).
pubmed: 18599441
pmcid: 2587604
doi: 10.1073/pnas.0801313105
Sun, C. et al. Functional reconstitution of human eukaryotic translation initiation factor 3 (eIF3). Proc. Natl Acad. Sci. USA 108, 20473–20478 (2011).
pubmed: 22135459
pmcid: 3251073
doi: 10.1073/pnas.1116821108
Smith, M. D. et al. Assembly of eIF3 mediated by mutually dependent subunit insertion. Structure 24, 886–896 (2016).
pubmed: 27210288
pmcid: 4938246
doi: 10.1016/j.str.2016.02.024
Le Tallec, B. et al. 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol. Cell 27, 660–674 (2007).
pubmed: 17707236
doi: 10.1016/j.molcel.2007.06.025
Makhnevych, T. & Houry, W. A. The role of Hsp90 in protein complex assembly. Biochim. Biophys. Acta 1823, 674–682 (2012).
pubmed: 21945180
doi: 10.1016/j.bbamcr.2011.09.001
Juszkiewicz, S. & Hegde, R. S. Quality control of orphaned proteins. Mol. Cell 71, 443–457 (2018).
pubmed: 30075143
pmcid: 6624128
doi: 10.1016/j.molcel.2018.07.001
Dill, K. A. & Chan, H. S. From Levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10–19 (1997).
pubmed: 8989315
doi: 10.1038/nsb0197-10
Marsh, J. A. et al. Protein complexes are under evolutionary selection to assemble via ordered pathways. Cell 153, 461–470 (2013).
pubmed: 23582331
pmcid: 4009401
doi: 10.1016/j.cell.2013.02.044
Padovani, C., Jevtic, P. & Rape, M. Quality control of protein complex composition. Mol. Cell 82, 1439–1450 (2022).
pubmed: 35316660
doi: 10.1016/j.molcel.2022.02.029
Pla-Prats, C. & Thomä, N. H. Quality control of protein complex assembly by the ubiquitin-proteasome system. Trends Cell Biol. 32, 696–706 (2022).
pubmed: 35300891
doi: 10.1016/j.tcb.2022.02.005
Yen, H. C., Xu, Q., Chou, D. M., Zhao, Z. & Elledge, S. J. Global protein stability profiling in mammalian cells. Science 322, 918–923 (2008).
pubmed: 18988847
doi: 10.1126/science.1160489
McShane, E. et al. Kinetic analysis of protein stability reveals age-dependent degradation. Cell 167, 803–815.e21 (2016).
pubmed: 27720452
doi: 10.1016/j.cell.2016.09.015
Fraser, C. S. et al. The j-subunit of human translation initiation factor eIF3 is required for the stable binding of eIF3 and its subcomplexes to 40 S ribosomal subunits in vitro. J. Biol. Chem. 279, 8946–8956 (2004).
pubmed: 14688252
doi: 10.1074/jbc.M312745200
Pick, E., Hofmann, K. & Glickman, M. H. PCI complexes: beyond the proteasome, CSN, and eIF3 Troika. Mol. Cell 35, 260–264 (2009).
pubmed: 19683491
doi: 10.1016/j.molcel.2009.07.009
ElAntak, L., Tzakos, A. G., Locker, N. & Lukavsky, P. J. Structure of eIF3b RNA recognition motif and its interaction with eIF3j: structural insights into the recruitment of eIF3b to the 40 S ribosomal subunit. J. Biol. Chem. 282, 8165–8174 (2007).
pubmed: 17190833
doi: 10.1074/jbc.M610860200
Siridechadilok, B., Fraser, C. S., Hall, R. J., Doudna, J. A. & Nogales, E. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310, 1513–1515 (2005).
pubmed: 16322461
doi: 10.1126/science.1118977
Wagner, S., Herrmannová, A., Šikrová, D. & Valášek, L. S. Human eIF3b and eIF3a serve as the nucleation core for the assembly of eIF3 into two interconnected modules: the yeast-like core and the octamer. Nucleic Acids Res. 44, 10772–10788 (2016).
pubmed: 27924037
pmcid: 5159561
doi: 10.1093/nar/gkw972
Hofmann, K. & Bucher, P. The PCI domain: a common theme in three multiprotein complexes. Trends Biochem. Sci. 23, 204–205 (1998).
pubmed: 9644972
doi: 10.1016/S0968-0004(98)01217-1
Enchev, R. I., Schreiber, A., Beuron, F. & Morris, E. P. Structural insights into the COP9 signalosome and its common architecture with the 26S proteasome lid and eIF3. Structure 18, 518–527 (2010).
pubmed: 20399188
doi: 10.1016/j.str.2010.02.008
Rezende, A. M. et al. The translation initiation complex eIF3 in trypanosomatids and other pathogenic excavates-identification of conserved and divergent features based on orthologue analysis. BMC Genom. 15, 1175 (2014).
doi: 10.1186/1471-2164-15-1175
Rozen, S. et al. CSNAP is a stoichiometric subunit of the COP9 signalosome. Cell Rep. 13, 585–598 (2015).
pubmed: 26456823
pmcid: 5724754
doi: 10.1016/j.celrep.2015.09.021
Kim, T., Hofmann, K., von Arnim, A. G. & Chamovitz, D. A. PCI complexes: pretty complex interactions in diverse signaling pathways. Trends Plant Sci. 6, 379–386 (2001).
pubmed: 11495792
doi: 10.1016/S1360-1385(01)02015-5
Dubiel, D., Rockel, B., Naumann, M. & Dubiel, W. Diversity of COP9 signalosome structures and functional consequences. FEBS Lett. 589, 2507–2513 (2015).
pubmed: 26096786
doi: 10.1016/j.febslet.2015.06.007
Sharon, M. et al. Symmetrical modularity of the COP9 signalosome complex suggests its multifunctionality. Structure 17, 31–40 (2009).
pubmed: 19141280
doi: 10.1016/j.str.2008.10.012
Sharon, M., Taverner, T., Ambroggio, X. I., Deshaies, R. J. & Robinson, C. V. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 4, e267 (2006).
pubmed: 16869714
pmcid: 1523230
doi: 10.1371/journal.pbio.0040267
Bai, M. et al. In-depth analysis of the lid subunits assembly mechanism in mammals. Biomolecules 9, 213 (2019).
Kapelari, B. et al. Electron microscopy and subunit-subunit interaction studies reveal a first architecture of COP9 signalosome. J. Mol. Biol. 300, 1169–1178 (2000).
pubmed: 10903862
doi: 10.1006/jmbi.2000.3912
Tsuge, T., Matsui, M. & Wei, N. The subunit 1 of the COP9 signalosome suppresses gene expression through its N-terminal domain and incorporates into the complex through the PCI domain. J. Mol. Biol. 305, 1–9 (2001).
pubmed: 11114242
doi: 10.1006/jmbi.2000.4288
Kotiguda, G. G. et al. The organization of a CSN5-containing subcomplex of the COP9 signalosome. J. Biol. Chem. 287, 42031–42041 (2012).
pubmed: 23086934
pmcid: 3516749
doi: 10.1074/jbc.M112.387977
Serino, G. et al. Characterization of the last subunit of the arabidopsis COP9 signalosome: implications for the overall structure and origin of the complex. Plant cell 15, 719–731 (2003).
pubmed: 12615944
pmcid: 150025
doi: 10.1105/tpc.009092
Tomko, R. J. Jr. & Hochstrasser, M. Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. Mol. Cell 44, 907–917 (2011).
pubmed: 22195964
pmcid: 3251515
doi: 10.1016/j.molcel.2011.11.020
He, W. & Parker, R. Functions of Lsm proteins in mRNA degradation and splicing. Curr. Opin. Cell Biol. 12, 346–350 (2000).
pubmed: 10801455
doi: 10.1016/S0955-0674(00)00098-3
Veretnik, S., Wills, C., Youkharibache, P., Valas, R. E. & Bourne, P. E. Sm/Lsm genes provide a glimpse into the early evolution of the spliceosome. PLoS Comput. Biol. 5, e1000315 (2009).
pubmed: 19282982
pmcid: 2650416
doi: 10.1371/journal.pcbi.1000315
Lehner, B. & Sanderson, C. M. A protein interaction framework for human mRNA degradation. Genome Res. 14, 1315–1323 (2004).
pubmed: 15231747
pmcid: 442147
doi: 10.1101/gr.2122004
Rual, J. F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).
pubmed: 16189514
doi: 10.1038/nature04209
Raker, V. A., Plessel, G. & Luhrmann, R. The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J. 15, 2256–2269 (1996).
pubmed: 8641291
pmcid: 450151
doi: 10.1002/j.1460-2075.1996.tb00579.x
Onischenko, E. et al. Maturation kinetics of a multiprotein complex revealed by metabolic labeling. Cell 183, 1785–1800.e26 (2020).
pubmed: 33333025
doi: 10.1016/j.cell.2020.11.001
Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288.e20 (2018).
pubmed: 30343899
pmcid: 6791824
doi: 10.1016/j.cell.2018.09.032
Kamenova, I. et al. Co-translational assembly of mammalian nuclear multisubunit complexes. Nat. Commun. 10, 1740 (2019).
pubmed: 30988355
pmcid: 6465333
doi: 10.1038/s41467-019-09749-y
Panasenko, O. O. et al. Co-translational assembly of proteasome subunits in NOT1-containing assemblysomes. Nat. Struct. Mol. Biol. 26, 110–120 (2019).
pubmed: 30692646
doi: 10.1038/s41594-018-0179-5
Mintseris, J. & Weng, Z. Structure, function, and evolution of transient and obligate protein-protein interactions. Proc. Natl Acad. Sci. USA 102, 10930–10935 (2005).
pubmed: 16043700
pmcid: 1182425
doi: 10.1073/pnas.0502667102
Matalon, O., Horovitz, A. & Levy, E. D. Different subunits belonging to the same protein complex often exhibit discordant expression levels and evolutionary properties. Curr. Opin. Struct. Biol. 26, 113–120 (2014).
pubmed: 24997301
doi: 10.1016/j.sbi.2014.06.001
Meister, C., Gulko, M. K., Köhler, A. M. & Braus, G. H. The devil is in the details: comparison between COP9 signalosome (CSN) and the LID of the 26S proteasome. Curr. Genet. 62, 129–136 (2016).
pubmed: 26497135
doi: 10.1007/s00294-015-0525-7
Echalier, A. et al. Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1. Proc. Natl Acad. Sci. USA 110, 1273–1278 (2013).
pubmed: 23288897
pmcid: 3557056
doi: 10.1073/pnas.1209345110
Zhou, L. et al. Crystal structures of the Lsm complex bound to the 3’ end sequence of U6 small nuclear RNA. Nature 506, 116–120 (2014).
pubmed: 24240276
doi: 10.1038/nature12803
Lai, H. Y., Yu, Y. H., Jhou, Y. T., Liao, C. W. & Leu, J. Y. Multiple intermolecular interactions facilitate rapid evolution of essential genes. Nat. Ecol. Evol. 7, 745–755 (2023).
pubmed: 36997737
pmcid: 10172115
doi: 10.1038/s41559-023-02029-5
Yanagitani, K., Juszkiewicz, S. & Hegde, R. S. UBE2O is a quality control factor for orphans of multiprotein complexes. Science 357, 472–475 (2017).
pubmed: 28774922
pmcid: 5549844
doi: 10.1126/science.aan0178
Sung, M. K. et al. A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. eLife 5, e19105 (2016).
Pla-Prats, C., Cavadini, S., Kempf, G. & Thomä, N. H. Recognition of the CCT5 di-Glu degron by CRL4(DCAF12) is dependent on TRiC assembly. EMBO J. 42, e112253 (2023).
pubmed: 36715408
pmcid: 9929631
doi: 10.15252/embj.2022112253
Pereira-Leal, J. B. & Teichmann, S. A. Novel specificities emerge by stepwise duplication of functional modules. Genome Res. 15, 552–559 (2005).
pubmed: 15805495
pmcid: 1074369
doi: 10.1101/gr.3102105
Marsh, J. A. & Teichmann, S. A. Structure, dynamics, assembly, and evolution of protein complexes. Annu. Rev. Biochem. 84, 551–575 (2015).
pubmed: 25494300
doi: 10.1146/annurev-biochem-060614-034142
Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282 (1992).
pubmed: 1633570
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
pubmed: 27004904
pmcid: 8210823
doi: 10.1093/molbev/msw054
Hsu, K.-L. & Yeang, C.-H. QCS (Quantifying Cooperative Stability): quantification of cooperative stabilization by model fitting to GPS data (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.11395487 (2024).
Hsu, K.-L. & Yeang, C.-H. RPCA: reconstruction of Protein Complex Assembly from Cooperative Stabilization Matrix (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.11396252 (2024).