Specific multivalent molecules boost CRISPR-mediated transcriptional activation.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
22 Aug 2024
Historique:
received: 14 01 2024
accepted: 15 08 2024
medline: 23 8 2024
pubmed: 23 8 2024
entrez: 22 8 2024
Statut: epublish

Résumé

CRISPR/Cas-based transcriptional activators can be enhanced by intrinsically disordered regions (IDRs). However, the underlying mechanisms are still debatable. Here, we examine 12 well-known IDRs by fusing them to the dCas9-VP64 activator, of which only seven can augment activation, albeit independently of their phase separation capabilities. Moreover, modular domains (MDs), another class of multivalent molecules, though ineffective in enhancing dCas9-VP64 activity on their own, show substantial enhancement in transcriptional activation when combined with dCas9-VP64-IDR. By varying the number of gRNA binding sites and fusing dCas9-VP64 with different IDRs/MDs, we uncover that optimal, rather than maximal, cis-trans cooperativity enables the most robust activation. Finally, targeting promoter-enhancer pairs yields synergistic effects, which can be further amplified via enhancing chromatin interactions. Overall, our study develops a versatile platform for efficient gene activation and sheds important insights into CRIPSR-based transcriptional activators enhanced with multivalent molecules.

Identifiants

pubmed: 39174527
doi: 10.1038/s41467-024-51694-y
pii: 10.1038/s41467-024-51694-y
doi:

Substances chimiques

RNA, Guide, CRISPR-Cas Systems 0
Chromatin 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7222

Informations de copyright

© 2024. The Author(s).

Références

Soto, L. F. et al. Compendium of human transcription factor effector domains. Mol. Cell 82, 514–526 (2022).
pubmed: 34863368 doi: 10.1016/j.molcel.2021.11.007
Lambert, S. A. et al. The human transcription factors. Cell 175, 598–599 (2018).
pubmed: 30290144 doi: 10.1016/j.cell.2018.09.045
Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013).
pubmed: 23498934 pmcid: 3640494 doi: 10.1016/j.cell.2013.02.014
Hafner, A. & Boettiger, A. The spatial organization of transcriptional control. Nat. Rev. Genet. 24, 53–68 (2023).
pubmed: 36104547 doi: 10.1038/s41576-022-00526-0
Beerli, R. R. & Barbas, C. F. 3rd Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20, 135–141 (2002).
pubmed: 11821858 doi: 10.1038/nbt0202-135
Beerli, R. R., Dreier, B. & Barbas, C. F. 3rd. Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl Acad. Sci. USA 97, 1495–1500 (2000).
pubmed: 10660690 pmcid: 26462 doi: 10.1073/pnas.040552697
Maeder, M. L. et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat. Methods 10, 243–245 (2013).
pubmed: 23396285 pmcid: 3584229 doi: 10.1038/nmeth.2366
Perez-Pinera, P. et al. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods 10, 239–242 (2013).
pubmed: 23377379 pmcid: 3719416 doi: 10.1038/nmeth.2361
Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149–153 (2011).
pubmed: 21248753 pmcid: 3084533 doi: 10.1038/nbt.1775
Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).
pubmed: 23849981 pmcid: 3770145 doi: 10.1016/j.cell.2013.06.044
Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).
pubmed: 23892898 pmcid: 3794058 doi: 10.1038/nmeth.2598
Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013).
pubmed: 23892895 pmcid: 3911785 doi: 10.1038/nmeth.2600
Dominguez, A. A., Lim, W. A. & Qi, L. S. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17, 5–15 (2016).
pubmed: 26670017 doi: 10.1038/nrm.2015.2
Chavez, A. et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13, 563–567 (2016).
pubmed: 27214048 pmcid: 4927356 doi: 10.1038/nmeth.3871
Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).
pubmed: 25730490 pmcid: 4393883 doi: 10.1038/nmeth.3312
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).
pubmed: 25307933 pmcid: 4252608 doi: 10.1016/j.cell.2014.09.039
Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).
pubmed: 25494202 doi: 10.1038/nature14136
Liao, H. K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507.e1415 (2017).
pubmed: 29224783 pmcid: 5732045 doi: 10.1016/j.cell.2017.10.025
Zhou, H. et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat. Neurosci. 21, 440–446 (2018).
pubmed: 29335603 doi: 10.1038/s41593-017-0060-6
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
pubmed: 28225081 pmcid: 7434221 doi: 10.1038/nrm.2017.7
Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e1816 (2018).
pubmed: 30449618 doi: 10.1016/j.cell.2018.10.042
Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).
pubmed: 29930094 pmcid: 6543815 doi: 10.1126/science.aar4199
Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science https://doi.org/10.1126/science.aar3958 (2018).
Schneider, N. et al. Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice. Sci. Adv. https://doi.org/10.1126/sciadv.abd3568 (2021).
Liu, J. et al. CRISPR-assisted transcription activation by phase separation proteins. Protein Cell, https://doi.org/10.1093/procel/pwad013 (2023).
Chong, S. et al. Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription. Mol. Cell 82, 2084–2097.e2085 (2022).
pubmed: 35483357 doi: 10.1016/j.molcel.2022.04.007
Trojanowski, J. et al. Transcription activation is enhanced by multivalent interactions independent of phase separation. Mol. Cell 82, 1878–1893.e1810 (2022).
pubmed: 35537448 doi: 10.1016/j.molcel.2022.04.017
Xiang, S. et al. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell 163, 829–839 (2015).
pubmed: 26544936 pmcid: 4879888 doi: 10.1016/j.cell.2015.10.040
Wei, M. T. et al. Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol. 22, 1187–1196 (2020).
pubmed: 32929202 doi: 10.1038/s41556-020-00578-6
Tziortzouda, P., Van Den Bosch, L. & Hirth, F. Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nat. Rev. Neurosci. 22, 197–208 (2021).
pubmed: 33654312 doi: 10.1038/s41583-021-00431-1
Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).
pubmed: 29849146 pmcid: 6475116 doi: 10.1038/s41586-018-0174-3
Liang, M. et al. Oligomerized liprin-alpha promotes phase separation of ELKS for compartmentalization of presynaptic active zone proteins. Cell Rep. 36, 109476 (2021).
pubmed: 34320361 doi: 10.1016/j.celrep.2021.109476
Gao, Y. et al. Multivalent m(6)A motifs promote phase separation of YTHDF proteins. Cell Res. 29, 767–769 (2019).
pubmed: 31388144 pmcid: 6796879 doi: 10.1038/s41422-019-0210-3
Fu, Y. & Zhuang, X. m(6)A-binding YTHDF proteins promote stress granule formation. Nat. Chem. Biol. 16, 955–963 (2020).
pubmed: 32451507 pmcid: 7442727 doi: 10.1038/s41589-020-0524-y
Celetti, G. et al. The liquid state of FG-nucleoporins mimics permeability barrier properties of nuclear pore complexes. J. Cell Biol. https://doi.org/10.1083/jcb.201907157 (2020).
Ambadipudi, S., Biernat, J., Riedel, D., Mandelkow, E. & Zweckstetter, M. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat. Commun. 8, 275 (2017).
pubmed: 28819146 pmcid: 5561136 doi: 10.1038/s41467-017-00480-0
Chen, Y. et al. Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells. Nat. Commun. 11, 3136 (2020).
pubmed: 32561716 pmcid: 7305327 doi: 10.1038/s41467-020-16880-8
Bracha, D. et al. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175, 1467–1480.e1413 (2018).
pubmed: 30500534 pmcid: 6724719 doi: 10.1016/j.cell.2018.10.048
Liu, Z. et al. Par complex cluster formation mediated by phase separation. Nat. Commun. 11, 2266 (2020).
pubmed: 32385244 pmcid: 7211019 doi: 10.1038/s41467-020-16135-6
Zeng, M. et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell 174, 1172–1187.e1116 (2018).
pubmed: 30078712 doi: 10.1016/j.cell.2018.06.047
Shen, Z. et al. Biological condensates form percolated networks with molecular motion properties distinctly different from dilute solutions. Elife, https://doi.org/10.7554/eLife.81907 (2023).
Baron, M. K. et al. An architectural framework that may lie at the core of the postsynaptic density. Science 311, 531–535 (2006).
pubmed: 16439662 doi: 10.1126/science.1118995
Zhang, Q. et al. Visualizing dynamics of cell signaling in vivo with a phase separation-based kinase reporter. Mol. Cell 69, 334–346.e334 (2018).
pubmed: 29307513 pmcid: 5788022 doi: 10.1016/j.molcel.2017.12.008
Carter, D., Chakalova, L., Osborne, C. S., Dai, Y. F. & Fraser, P. Long-range chromatin regulatory interactions in vivo. Nat. Genet 32, 623–626 (2002).
pubmed: 12426570 doi: 10.1038/ng1051
Morgan, S. L. et al. Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat. Commun. 8, 15993 (2017).
pubmed: 28703221 pmcid: 5511349 doi: 10.1038/ncomms15993
Wagh, K., Garcia, D. A. & Upadhyaya, A. Phase separation in transcription factor dynamics and chromatin organization. Curr. Opin. Struct. Biol. 71, 148–155 (2021).
pubmed: 34303933 pmcid: 8794578 doi: 10.1016/j.sbi.2021.06.009
Moses, D., Ginell, G. M., Holehouse, A. S. & Sukenik, S. Intrinsically disordered regions are poised to act as sensors of cellular chemistry. Trends Biochem. Sci. 48, 1019–1034 (2023).
pubmed: 37657994 doi: 10.1016/j.tibs.2023.08.001
Lyons, H. et al. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 186, 327–345.e328 (2023).
pubmed: 36603581 pmcid: 9910284 doi: 10.1016/j.cell.2022.12.013
Linden, M. et al. FET family fusion oncoproteins target the SWI/SNF chromatin remodeling complex. EMBO Rep. https://doi.org/10.15252/embr.201845766 (2019).
Kim, Y. J. et al. Light-activated macromolecular phase separation modulates transcription by reconfiguring chromatin interactions. Sci. Adv. 9, eadg1123 (2023).
pubmed: 37000871 pmcid: 10065442 doi: 10.1126/sciadv.adg1123
Lee, J. H. et al. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol. Cell 81, 3368–3385.e3369 (2021).
pubmed: 34375583 pmcid: 8383322 doi: 10.1016/j.molcel.2021.07.024
van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).
pubmed: 24773235 pmcid: 4095912 doi: 10.1021/cr400525m
Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).
pubmed: 22579281 pmcid: 6347373 doi: 10.1016/j.cell.2012.04.017
Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29 (2015).
pubmed: 25531225 pmcid: 4405151 doi: 10.1038/nrm3920
Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).
pubmed: 32873929 doi: 10.1038/s41580-020-0272-6
Ma, S. et al. Phase-separated DropCRISPRa platform for efficient gene activation in mammalian cells and mice. Nucleic Acids Res. 51, 5271–5284 (2023).
pubmed: 37094074 pmcid: 10250237 doi: 10.1093/nar/gkad301
Wan, Y. et al. Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection. Cell 184, 2878–2895.e2820 (2021).
pubmed: 33979654 pmcid: 8183334 doi: 10.1016/j.cell.2021.04.012
Donovan, B. T., Chen, H., Jipa, C., Bai, L. & Poirier, M. G. Dissociation rate compensation mechanism for budding yeast pioneer transcription factors. Elife https://doi.org/10.7554/eLife.43008 (2019).
Wu, J. et al. Modulating gene regulation function by chemically controlled transcription factor clustering. Nat. Commun. 13, 2663 (2022).
pubmed: 35562359 pmcid: 9106659 doi: 10.1038/s41467-022-30397-2
Klann, T. S. et al. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol. 35, 561–568 (2017).
pubmed: 28369033 pmcid: 5462860 doi: 10.1038/nbt.3853
Li, K. et al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat. Commun. 11, 485 (2020).
pubmed: 31980609 pmcid: 6981169 doi: 10.1038/s41467-020-14362-5
Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).
pubmed: 25849900 pmcid: 4430400 doi: 10.1038/nbt.3199
Ahn, J. H. et al. Phase separation drives aberrant chromatin looping and cancer development. Nature 595, 591–595 (2021).
pubmed: 34163069 pmcid: 8647409 doi: 10.1038/s41586-021-03662-5
Wang, J. et al. Phase separation of OCT4 controls TAD reorganization to promote cell fate transitions. Cell Stem Cell 28, 1868–1883.e1811 (2021).
pubmed: 34038708 doi: 10.1016/j.stem.2021.04.023
Ke, M. et al. Integrated and quantitative proteomic approach for charting temporal and endogenous protein complexes. Anal. Chem. 90, 12574–12583 (2018).
pubmed: 30280895 doi: 10.1021/acs.analchem.8b02667
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142 pmcid: 4655817 doi: 10.1038/nmeth.3317
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8

Auteurs

Rui Chen (R)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Innovative Center for RNA Therapeutics (ICRT), School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China.

Xinyao Shi (X)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.

Xiangrui Yao (X)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.

Tong Gao (T)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.

Guangyu Huang (G)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.

Duo Ning (D)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.

Zemin Cao (Z)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.

Youxin Xu (Y)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.

Weizheng Liang (W)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.

Simon Zhongyuan Tian (SZ)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Innovative Center for RNA Therapeutics (ICRT), School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.

Qionghua Zhu (Q)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Innovative Center for RNA Therapeutics (ICRT), School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China.

Liang Fang (L)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Innovative Center for RNA Therapeutics (ICRT), School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China.

Meizhen Zheng (M)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Innovative Center for RNA Therapeutics (ICRT), School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.

Yuhui Hu (Y)

Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China.

Huanhuan Cui (H)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China. cuihh@sustech.edu.cn.
Innovative Center for RNA Therapeutics (ICRT), School of Life Sciences, Southern University of Science and Technology, Shenzhen, China. cuihh@sustech.edu.cn.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China. cuihh@sustech.edu.cn.
Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China. cuihh@sustech.edu.cn.

Wei Chen (W)

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China. chenw@sustech.edu.cn.
Innovative Center for RNA Therapeutics (ICRT), School of Life Sciences, Southern University of Science and Technology, Shenzhen, China. chenw@sustech.edu.cn.
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China. chenw@sustech.edu.cn.
Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China. chenw@sustech.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH