Specific multivalent molecules boost CRISPR-mediated transcriptional activation.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
22 Aug 2024
22 Aug 2024
Historique:
received:
14
01
2024
accepted:
15
08
2024
medline:
23
8
2024
pubmed:
23
8
2024
entrez:
22
8
2024
Statut:
epublish
Résumé
CRISPR/Cas-based transcriptional activators can be enhanced by intrinsically disordered regions (IDRs). However, the underlying mechanisms are still debatable. Here, we examine 12 well-known IDRs by fusing them to the dCas9-VP64 activator, of which only seven can augment activation, albeit independently of their phase separation capabilities. Moreover, modular domains (MDs), another class of multivalent molecules, though ineffective in enhancing dCas9-VP64 activity on their own, show substantial enhancement in transcriptional activation when combined with dCas9-VP64-IDR. By varying the number of gRNA binding sites and fusing dCas9-VP64 with different IDRs/MDs, we uncover that optimal, rather than maximal, cis-trans cooperativity enables the most robust activation. Finally, targeting promoter-enhancer pairs yields synergistic effects, which can be further amplified via enhancing chromatin interactions. Overall, our study develops a versatile platform for efficient gene activation and sheds important insights into CRIPSR-based transcriptional activators enhanced with multivalent molecules.
Identifiants
pubmed: 39174527
doi: 10.1038/s41467-024-51694-y
pii: 10.1038/s41467-024-51694-y
doi:
Substances chimiques
RNA, Guide, CRISPR-Cas Systems
0
Chromatin
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7222Informations de copyright
© 2024. The Author(s).
Références
Soto, L. F. et al. Compendium of human transcription factor effector domains. Mol. Cell 82, 514–526 (2022).
pubmed: 34863368
doi: 10.1016/j.molcel.2021.11.007
Lambert, S. A. et al. The human transcription factors. Cell 175, 598–599 (2018).
pubmed: 30290144
doi: 10.1016/j.cell.2018.09.045
Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013).
pubmed: 23498934
pmcid: 3640494
doi: 10.1016/j.cell.2013.02.014
Hafner, A. & Boettiger, A. The spatial organization of transcriptional control. Nat. Rev. Genet. 24, 53–68 (2023).
pubmed: 36104547
doi: 10.1038/s41576-022-00526-0
Beerli, R. R. & Barbas, C. F. 3rd Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20, 135–141 (2002).
pubmed: 11821858
doi: 10.1038/nbt0202-135
Beerli, R. R., Dreier, B. & Barbas, C. F. 3rd. Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl Acad. Sci. USA 97, 1495–1500 (2000).
pubmed: 10660690
pmcid: 26462
doi: 10.1073/pnas.040552697
Maeder, M. L. et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat. Methods 10, 243–245 (2013).
pubmed: 23396285
pmcid: 3584229
doi: 10.1038/nmeth.2366
Perez-Pinera, P. et al. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods 10, 239–242 (2013).
pubmed: 23377379
pmcid: 3719416
doi: 10.1038/nmeth.2361
Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149–153 (2011).
pubmed: 21248753
pmcid: 3084533
doi: 10.1038/nbt.1775
Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).
pubmed: 23849981
pmcid: 3770145
doi: 10.1016/j.cell.2013.06.044
Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).
pubmed: 23892898
pmcid: 3794058
doi: 10.1038/nmeth.2598
Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013).
pubmed: 23892895
pmcid: 3911785
doi: 10.1038/nmeth.2600
Dominguez, A. A., Lim, W. A. & Qi, L. S. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17, 5–15 (2016).
pubmed: 26670017
doi: 10.1038/nrm.2015.2
Chavez, A. et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13, 563–567 (2016).
pubmed: 27214048
pmcid: 4927356
doi: 10.1038/nmeth.3871
Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).
pubmed: 25730490
pmcid: 4393883
doi: 10.1038/nmeth.3312
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).
pubmed: 25307933
pmcid: 4252608
doi: 10.1016/j.cell.2014.09.039
Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).
pubmed: 25494202
doi: 10.1038/nature14136
Liao, H. K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507.e1415 (2017).
pubmed: 29224783
pmcid: 5732045
doi: 10.1016/j.cell.2017.10.025
Zhou, H. et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat. Neurosci. 21, 440–446 (2018).
pubmed: 29335603
doi: 10.1038/s41593-017-0060-6
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
pubmed: 28225081
pmcid: 7434221
doi: 10.1038/nrm.2017.7
Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e1816 (2018).
pubmed: 30449618
doi: 10.1016/j.cell.2018.10.042
Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).
pubmed: 29930094
pmcid: 6543815
doi: 10.1126/science.aar4199
Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science https://doi.org/10.1126/science.aar3958 (2018).
Schneider, N. et al. Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice. Sci. Adv. https://doi.org/10.1126/sciadv.abd3568 (2021).
Liu, J. et al. CRISPR-assisted transcription activation by phase separation proteins. Protein Cell, https://doi.org/10.1093/procel/pwad013 (2023).
Chong, S. et al. Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription. Mol. Cell 82, 2084–2097.e2085 (2022).
pubmed: 35483357
doi: 10.1016/j.molcel.2022.04.007
Trojanowski, J. et al. Transcription activation is enhanced by multivalent interactions independent of phase separation. Mol. Cell 82, 1878–1893.e1810 (2022).
pubmed: 35537448
doi: 10.1016/j.molcel.2022.04.017
Xiang, S. et al. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell 163, 829–839 (2015).
pubmed: 26544936
pmcid: 4879888
doi: 10.1016/j.cell.2015.10.040
Wei, M. T. et al. Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol. 22, 1187–1196 (2020).
pubmed: 32929202
doi: 10.1038/s41556-020-00578-6
Tziortzouda, P., Van Den Bosch, L. & Hirth, F. Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nat. Rev. Neurosci. 22, 197–208 (2021).
pubmed: 33654312
doi: 10.1038/s41583-021-00431-1
Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).
pubmed: 29849146
pmcid: 6475116
doi: 10.1038/s41586-018-0174-3
Liang, M. et al. Oligomerized liprin-alpha promotes phase separation of ELKS for compartmentalization of presynaptic active zone proteins. Cell Rep. 36, 109476 (2021).
pubmed: 34320361
doi: 10.1016/j.celrep.2021.109476
Gao, Y. et al. Multivalent m(6)A motifs promote phase separation of YTHDF proteins. Cell Res. 29, 767–769 (2019).
pubmed: 31388144
pmcid: 6796879
doi: 10.1038/s41422-019-0210-3
Fu, Y. & Zhuang, X. m(6)A-binding YTHDF proteins promote stress granule formation. Nat. Chem. Biol. 16, 955–963 (2020).
pubmed: 32451507
pmcid: 7442727
doi: 10.1038/s41589-020-0524-y
Celetti, G. et al. The liquid state of FG-nucleoporins mimics permeability barrier properties of nuclear pore complexes. J. Cell Biol. https://doi.org/10.1083/jcb.201907157 (2020).
Ambadipudi, S., Biernat, J., Riedel, D., Mandelkow, E. & Zweckstetter, M. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat. Commun. 8, 275 (2017).
pubmed: 28819146
pmcid: 5561136
doi: 10.1038/s41467-017-00480-0
Chen, Y. et al. Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells. Nat. Commun. 11, 3136 (2020).
pubmed: 32561716
pmcid: 7305327
doi: 10.1038/s41467-020-16880-8
Bracha, D. et al. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175, 1467–1480.e1413 (2018).
pubmed: 30500534
pmcid: 6724719
doi: 10.1016/j.cell.2018.10.048
Liu, Z. et al. Par complex cluster formation mediated by phase separation. Nat. Commun. 11, 2266 (2020).
pubmed: 32385244
pmcid: 7211019
doi: 10.1038/s41467-020-16135-6
Zeng, M. et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell 174, 1172–1187.e1116 (2018).
pubmed: 30078712
doi: 10.1016/j.cell.2018.06.047
Shen, Z. et al. Biological condensates form percolated networks with molecular motion properties distinctly different from dilute solutions. Elife, https://doi.org/10.7554/eLife.81907 (2023).
Baron, M. K. et al. An architectural framework that may lie at the core of the postsynaptic density. Science 311, 531–535 (2006).
pubmed: 16439662
doi: 10.1126/science.1118995
Zhang, Q. et al. Visualizing dynamics of cell signaling in vivo with a phase separation-based kinase reporter. Mol. Cell 69, 334–346.e334 (2018).
pubmed: 29307513
pmcid: 5788022
doi: 10.1016/j.molcel.2017.12.008
Carter, D., Chakalova, L., Osborne, C. S., Dai, Y. F. & Fraser, P. Long-range chromatin regulatory interactions in vivo. Nat. Genet 32, 623–626 (2002).
pubmed: 12426570
doi: 10.1038/ng1051
Morgan, S. L. et al. Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat. Commun. 8, 15993 (2017).
pubmed: 28703221
pmcid: 5511349
doi: 10.1038/ncomms15993
Wagh, K., Garcia, D. A. & Upadhyaya, A. Phase separation in transcription factor dynamics and chromatin organization. Curr. Opin. Struct. Biol. 71, 148–155 (2021).
pubmed: 34303933
pmcid: 8794578
doi: 10.1016/j.sbi.2021.06.009
Moses, D., Ginell, G. M., Holehouse, A. S. & Sukenik, S. Intrinsically disordered regions are poised to act as sensors of cellular chemistry. Trends Biochem. Sci. 48, 1019–1034 (2023).
pubmed: 37657994
doi: 10.1016/j.tibs.2023.08.001
Lyons, H. et al. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 186, 327–345.e328 (2023).
pubmed: 36603581
pmcid: 9910284
doi: 10.1016/j.cell.2022.12.013
Linden, M. et al. FET family fusion oncoproteins target the SWI/SNF chromatin remodeling complex. EMBO Rep. https://doi.org/10.15252/embr.201845766 (2019).
Kim, Y. J. et al. Light-activated macromolecular phase separation modulates transcription by reconfiguring chromatin interactions. Sci. Adv. 9, eadg1123 (2023).
pubmed: 37000871
pmcid: 10065442
doi: 10.1126/sciadv.adg1123
Lee, J. H. et al. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol. Cell 81, 3368–3385.e3369 (2021).
pubmed: 34375583
pmcid: 8383322
doi: 10.1016/j.molcel.2021.07.024
van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).
pubmed: 24773235
pmcid: 4095912
doi: 10.1021/cr400525m
Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).
pubmed: 22579281
pmcid: 6347373
doi: 10.1016/j.cell.2012.04.017
Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29 (2015).
pubmed: 25531225
pmcid: 4405151
doi: 10.1038/nrm3920
Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).
pubmed: 32873929
doi: 10.1038/s41580-020-0272-6
Ma, S. et al. Phase-separated DropCRISPRa platform for efficient gene activation in mammalian cells and mice. Nucleic Acids Res. 51, 5271–5284 (2023).
pubmed: 37094074
pmcid: 10250237
doi: 10.1093/nar/gkad301
Wan, Y. et al. Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection. Cell 184, 2878–2895.e2820 (2021).
pubmed: 33979654
pmcid: 8183334
doi: 10.1016/j.cell.2021.04.012
Donovan, B. T., Chen, H., Jipa, C., Bai, L. & Poirier, M. G. Dissociation rate compensation mechanism for budding yeast pioneer transcription factors. Elife https://doi.org/10.7554/eLife.43008 (2019).
Wu, J. et al. Modulating gene regulation function by chemically controlled transcription factor clustering. Nat. Commun. 13, 2663 (2022).
pubmed: 35562359
pmcid: 9106659
doi: 10.1038/s41467-022-30397-2
Klann, T. S. et al. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol. 35, 561–568 (2017).
pubmed: 28369033
pmcid: 5462860
doi: 10.1038/nbt.3853
Li, K. et al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat. Commun. 11, 485 (2020).
pubmed: 31980609
pmcid: 6981169
doi: 10.1038/s41467-020-14362-5
Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).
pubmed: 25849900
pmcid: 4430400
doi: 10.1038/nbt.3199
Ahn, J. H. et al. Phase separation drives aberrant chromatin looping and cancer development. Nature 595, 591–595 (2021).
pubmed: 34163069
pmcid: 8647409
doi: 10.1038/s41586-021-03662-5
Wang, J. et al. Phase separation of OCT4 controls TAD reorganization to promote cell fate transitions. Cell Stem Cell 28, 1868–1883.e1811 (2021).
pubmed: 34038708
doi: 10.1016/j.stem.2021.04.023
Ke, M. et al. Integrated and quantitative proteomic approach for charting temporal and endogenous protein complexes. Anal. Chem. 90, 12574–12583 (2018).
pubmed: 30280895
doi: 10.1021/acs.analchem.8b02667
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142
pmcid: 4655817
doi: 10.1038/nmeth.3317
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8