Rapid intra-host diversification and evolution of SARS-CoV-2 in advanced HIV infection.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
22 Aug 2024
Historique:
received: 14 12 2023
accepted: 12 08 2024
medline: 23 8 2024
pubmed: 23 8 2024
entrez: 22 8 2024
Statut: epublish

Résumé

Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions, but the processes responsible for these observations are incompletely understood. Here we use high-throughput, single-genome amplification and sequencing (HT-SGS) to sequence SARS-CoV-2 spike genes from people with HIV (PWH, n = 22) and people without HIV (PWOH, n = 25). In PWOH and PWH with CD4 T cell counts (i.e., CD4 counts) ≥ 200 cells/μL, we find that most SARS-CoV-2 genomes sampled in each person share one spike sequence. By contrast, in people with advanced HIV infection (i.e., CD4 counts < 200 cells/μL), HT-SGS reveals a median of 46 distinct linked groupings of spike mutations per person. Elevated intra-host spike diversity in people with advanced HIV infection is detected immediately after COVID-19 symptom onset, and early intra-host spike diversity predicts SARS-CoV-2 shedding duration among PWH. Analysis of longitudinal timepoints reveals rapid fluctuations in spike sequence populations, replacement of founder sequences by groups of new haplotypes, and positive selection at functionally important residues. These findings demonstrate remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern.

Identifiants

pubmed: 39174553
doi: 10.1038/s41467-024-51539-8
pii: 10.1038/s41467-024-51539-8
doi:

Substances chimiques

Spike Glycoprotein, Coronavirus 0
spike protein, SARS-CoV-2 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7240

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI005157

Informations de copyright

© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Corey, L. et al. SARS-CoV-2 variants in patients with immunosuppression. N. Engl. J. Med. 385, 562–566 (2021).
pubmed: 34347959 pmcid: 8494465 doi: 10.1056/NEJMsb2104756
Markov, P. V. et al. The evolution of SARS-CoV-2. Nat. Rev. Microbiol 21, 361–379 (2023).
pubmed: 37020110 doi: 10.1038/s41579-023-00878-2
Tarhini, H. et al. Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectiousness among three immunocompromised patients: from prolonged viral shedding to SARS-CoV-2 Superinfection. J. Infect. Dis. 223, 1522–1527 (2021).
pubmed: 33556961 doi: 10.1093/infdis/jiab075
Gonzalez-Reiche, A. S. et al. Sequential intrahost evolution and onward transmission of SARS-CoV-2 variants. Nat. Commun. 14, 3235 (2023).
pubmed: 37270625 pmcid: 10239218 doi: 10.1038/s41467-023-38867-x
Choi, B. et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised Host. N. Engl. J. Med. 383, 2291–2293 (2020).
pubmed: 33176080 doi: 10.1056/NEJMc2031364
Weigang, S. et al. Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 patient as a source of immune escape variants. Nat. Commun. 12, 6405 (2021).
pubmed: 34737266 pmcid: 8568958 doi: 10.1038/s41467-021-26602-3
Cele, S. et al. SARS-CoV-2 prolonged infection during advanced HIV disease evolves extensive immune escape. Cell Host Microbe 30, 154–162.e155 (2022).
pubmed: 35120605 pmcid: 8758318 doi: 10.1016/j.chom.2022.01.005
Karim, F. et al. Clearance of persistent SARS-CoV-2 associates with increased neutralizing antibodies in advanced HIV disease post-ART initiation. Nat. Commun. 15, 2360 (2024).
pubmed: 38491050 pmcid: 10943233 doi: 10.1038/s41467-024-46673-2
Kemp, S. A. et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 592, 277–282 (2021).
pubmed: 33545711 pmcid: 7610568 doi: 10.1038/s41586-021-03291-y
Truong, T. T. et al. Increased viral variants in children and young adults with impaired humoral immunity and persistent SARS-CoV-2 infection: A consecutive case series. EBioMedicine 67, 103355 (2021).
pubmed: 33915337 pmcid: 8072072 doi: 10.1016/j.ebiom.2021.103355
Scherer, E. M. et al. SARS-CoV-2 Evolution and immune escape in immunocompromised patients. N. Engl. J. Med. 386, 2436–2438 (2022).
pubmed: 35675197 doi: 10.1056/NEJMc2202861
Chaguza, C. et al. Accelerated SARS-CoV-2 intrahost evolution leading to distinct genotypes during chronic infection. Cell Rep. Med 4, 100943 (2023).
pubmed: 36791724 pmcid: 9906997 doi: 10.1016/j.xcrm.2023.100943
Raglow, Z. et al. SARS-CoV-2 shedding and evolution in patients who were immunocompromised during the omicron period: a multicentre, prospective analysis. Lancet Microbe 5, e235–e246 (2024).
pubmed: 38286131 doi: 10.1016/S2666-5247(23)00336-1
Khatamzas, E. et al. Accumulation of mutations in antibody and CD8 T cell epitopes in a B cell depleted lymphoma patient with chronic SARS-CoV-2 infection. Nat. Commun. 13, 5586 (2022).
pubmed: 36151076 pmcid: 9508331 doi: 10.1038/s41467-022-32772-5
Ko, K. K. K. et al. Emergence of SARS-CoV-2 spike mutations during prolonged infection in immunocompromised hosts. Microbiol. Spectr. 10, 00791–00722 (2022).
doi: 10.1128/spectrum.00791-22
Chiara, M. et al. Next generation sequencing of SARS-CoV-2 genomes: challenges, applications and opportunities. Brief. Bioinform 22, 616–630 (2021).
pubmed: 33279989 doi: 10.1093/bib/bbaa297
Ramuta, M. D. et al. SARS-CoV-2 and other respiratory pathogens are detected in continuous air samples from congregate settings. Nat. Commun. 13, 4717 (2022).
pubmed: 35953484 pmcid: 9366802 doi: 10.1038/s41467-022-32406-w
Karthikeyan, S. et al. Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission. Nature 609, 101–108 (2022).
pubmed: 35798029 pmcid: 9433318 doi: 10.1038/s41586-022-05049-6
Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e819 (2020).
pubmed: 32697968 pmcid: 7332439 doi: 10.1016/j.cell.2020.06.043
Ko, S. H. et al. High-throughput, single-copy sequencing reveals SARS-CoV-2 spike variants coincident with mounting humoral immunity during acute COVID-19. PLOS Pathogens 17, e1009431 (2021).
Meiring, S. et al. Prolonged shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at high viral loads among hospitalized immunocompromised persons living with human immunodeficiency virus (HIV), South Africa. Clin. Infect. Dis. 75, e144–e156 (2022).
pubmed: 35134129 pmcid: 8903337 doi: 10.1093/cid/ciac077
Kleynhans, J. et al. Household transmission of severe acute respiratory syndrome coronavirus 2 from adult index cases with and without human immunodeficiency virus in South Africa, 2020–2021: a case-ascertained, prospective, observational household transmission study. Clin. Infect. Dis. 76, e71–e81 (2023).
pubmed: 35925613 doi: 10.1093/cid/ciac640
Hatcher, E. L. et al. Virus Variation Resource - improved response to emergent viral outbreaks. Nucleic Acids Res 45, D482–D490 (2017).
pubmed: 27899678 doi: 10.1093/nar/gkw1065
Aksamentov, I., Roemer, C., Hodcroft, E. & Neher, R. Nextclade: clade assignment, mutation calling and quality control for viral genomes. Journal of Open Source Software 6, https://doi.org/10.21105/joss.03773 (2021).
Balaban, M., Moshiri, N., Mai, U., Jia, X. & Mirarab, S. TreeCluster: clustering biological sequences using phylogenetic trees. PLOS ONE 14, e0221068 (2019).
pubmed: 31437182 pmcid: 6705769 doi: 10.1371/journal.pone.0221068
McCarthy, K. R. et al. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science, https://doi.org/10.1126/science.abf6950 (2021).
Hubbard, S. & Thornton, J. Naccess: Department of Biochemistry and Molecular Biology, University College London. Software available at http://www.bioinf.manchester.ac.uk/naccess/nacdownload.html (1993).
Zhang, J. et al. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science 372, 525–530 (2021).
pubmed: 33727252 pmcid: 8139424 doi: 10.1126/science.abf2303
Murrell, B. et al. FUBAR: A fast, unconstrained bayesian approximation for inferring selection. Mol. Biol. Evolution 30, 1196–1205 (2013).
doi: 10.1093/molbev/mst030
Karim, F. et al. Clearance of persistent SARS-CoV-2 associates with increased neutralizing antibodies in advanced HIV disease post-ART initiation. Nat. Commun. 15, 2360 (2024).
Motsoeneng, B. M. et al. Despite delayed kinetics, people living with HIV achieve equivalent antibody function after SARS-CoV-2 infection or vaccination. Front Immunol. 14, 1231276 (2023).
pubmed: 37600825 pmcid: 10435738 doi: 10.3389/fimmu.2023.1231276
Soumelis, V. et al. Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 98, 906–912 (2001).
pubmed: 11493432 doi: 10.1182/blood.V98.4.906
Sugawara, S. et al. People with HIV-1 demonstrate type 1 interferon refractoriness associated with upregulated USP18. J Virol 95, e01777–20 (2021).
Lei, X. et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat. Commun. 11, 3810 (2020).
pubmed: 32733001 pmcid: 7392898 doi: 10.1038/s41467-020-17665-9
Lokugamage, K. G. et al. Type I Interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV. J. Virol. 94, e1410–e1420 (2020).
doi: 10.1128/JVI.01410-20
Wang, S. et al. Modeling the viral dynamics of SARS-CoV-2 infection. Math. Biosci. 328, 108438 (2020).
pubmed: 32771304 pmcid: 7409942 doi: 10.1016/j.mbs.2020.108438
Haaland, R. E. et al. Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexual transmission of subtype A and C HIV-1. PLoS Pathog. 5, e1000274 (2009).
pubmed: 19165325 pmcid: 2621345 doi: 10.1371/journal.ppat.1000274
McCrone, J. T. & Lauring, A. S. Genetic bottlenecks in intraspecies virus transmission. Curr. Opin. Virol. 28, 20–25 (2018).
pubmed: 29107838 doi: 10.1016/j.coviro.2017.10.008
Walker, B. & McMichael, A. The T-cell response to HIV. Cold Spring Harb Perspect Med 2, a007054 (2012).
Hong, J. J., Chang, K. T. & Villinger, F. The Dynamics of T and B cells in lymph node during chronic HIV infection: TFH and HIV, unhappy dance partners? Front Immunol. 7, 522 (2016).
pubmed: 27920778 pmcid: 5118424 doi: 10.3389/fimmu.2016.00522
Gruenbach, M. et al. cART restores transient responsiveness to IFN Type 1 in HIV-infected humanized mice. J. Virol. 96, e0082722 (2022).
pubmed: 36250708 doi: 10.1128/jvi.00827-22
Rehr, M. et al. Emergence of polyfunctional CD8+ T cells after prolonged suppression of human immunodeficiency virus replication by antiretroviral therapy. J. Virol. 82, 3391–3404 (2008).
pubmed: 18199637 pmcid: 2268491 doi: 10.1128/JVI.02383-07
Sheng, W. H. et al. Evolution of hepatitis B serological markers in HIV-infected patients receiving highly active antiretroviral therapy. Clin. Infect. Dis. 45, 1221–1229 (2007).
pubmed: 17918088 doi: 10.1086/522173
Hung, C. C. et al. Clinical experience of the 23-valent capsular polysaccharide pneumococcal vaccination in HIV-1-infected patients receiving highly active antiretroviral therapy: a prospective observational study. Vaccine 22, 2006–2012 (2004).
pubmed: 15121313 doi: 10.1016/j.vaccine.2003.10.030
Alrubayyi, A. et al. Characterization of humoral and SARS-CoV-2 specific T cell responses in people living with HIV. Nat. Commun. 12, 5839 (2021).
pubmed: 34611163 pmcid: 8492866 doi: 10.1038/s41467-021-26137-7
Snyman, J. et al. Similar antibody responses against severe acute respiratory syndrome coronavirus 2 in individuals living without and with human immunodeficiency virus on antiretroviral therapy during the first south african infection wave. Clin. Infect. Dis. 75, e249–e256 (2022).
pubmed: 34472583 doi: 10.1093/cid/ciab758
Amicone, M. et al. Mutation rate of SARS-CoV-2 and emergence of mutators during experimental evolution. Evol. Med Public Health 10, 142–155 (2022).
pubmed: 35419205 pmcid: 8996265 doi: 10.1093/emph/eoac010
Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022).
pubmed: 36517603 pmcid: 9749650 doi: 10.1038/s41586-022-05542-y
Van Cleemput, J. et al. Organ-specific genome diversity of replication-competent SARS-CoV-2. Nat. Commun. 12, 6612 (2021).
pubmed: 34785663 pmcid: 8595628 doi: 10.1038/s41467-021-26884-7
Posada, D. & Crandall, K. A. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc. Natl Acad. Sci. USA 98, 13757–13762 (2001).
pubmed: 11717435 pmcid: 61114 doi: 10.1073/pnas.241370698
Hepler, N. L. et al. in Conference on Advances in Genome Biology and Technology (2016).
Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).
pubmed: 28100584 pmcid: 5340976 doi: 10.1101/gr.209601.116
Buschmann, T. DNABarcodes: an R package for the systematic construction of DNA sample tags. Bioinformatics 33, 920–922 (2016).
doi: 10.1093/bioinformatics/btw759
Lam, H. M., Ratmann, O. & Boni, M. F. Improved algorithmic complexity for the 3SEQ recombination detection algorithm. Mol. Biol. Evol. 35, 247–251 (2018).
pubmed: 29029186 doi: 10.1093/molbev/msx263
Salinas, N. R. & Little, D. P. 2matrix: A utility for indel coding and phylogenetic matrix concatenation(1.). Appl Plant Sci 2, 1300083 (2014).
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evolution 32, 268–274 (2014).
doi: 10.1093/molbev/msu300
Wibmer, C. K. et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med 27, 622–625 (2021).
pubmed: 33654292 doi: 10.1038/s41591-021-01285-x
Ko, S. H. et al. Intra-host single-genome sequences of SARS-CoV-2 spike from people without HIV and people living with HIV. Zenodo https://zenodo.org/doi/10.5281/zenodo.12744612 (2024).

Auteurs

Sung Hee Ko (SH)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Pierce Radecki (P)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Frida Belinky (F)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Jinal N Bhiman (JN)

National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa.
SAMRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Susan Meiring (S)

National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa.

Jackie Kleynhans (J)

National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa.
School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Daniel Amoako (D)

National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa.
Department of Integrative Biology and Bioinformatics, College of Biological Sciences, University of Guelph, Ontario, Canada.

Vanessa Guerra Canedo (V)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Margaret Lucas (M)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Dikeledi Kekana (D)

National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa.

Neil Martinson (N)

Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa.
Johns Hopkins University, Center for TB Research, Baltimore, MD, USA.

Limakatso Lebina (L)

Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa.

Josie Everatt (J)

National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa.

Stefano Tempia (S)

National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa.
School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Tatsiana Bylund (T)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Reda Rawi (R)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Peter D Kwong (PD)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Nicole Wolter (N)

National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa.
School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Anne von Gottberg (A)

National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa.
School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Cheryl Cohen (C)

National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa.
School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Eli A Boritz (EA)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. eli.boritz@niaid.nih.gov.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH