Rapid intra-host diversification and evolution of SARS-CoV-2 in advanced HIV infection.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
22 Aug 2024
22 Aug 2024
Historique:
received:
14
12
2023
accepted:
12
08
2024
medline:
23
8
2024
pubmed:
23
8
2024
entrez:
22
8
2024
Statut:
epublish
Résumé
Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions, but the processes responsible for these observations are incompletely understood. Here we use high-throughput, single-genome amplification and sequencing (HT-SGS) to sequence SARS-CoV-2 spike genes from people with HIV (PWH, n = 22) and people without HIV (PWOH, n = 25). In PWOH and PWH with CD4 T cell counts (i.e., CD4 counts) ≥ 200 cells/μL, we find that most SARS-CoV-2 genomes sampled in each person share one spike sequence. By contrast, in people with advanced HIV infection (i.e., CD4 counts < 200 cells/μL), HT-SGS reveals a median of 46 distinct linked groupings of spike mutations per person. Elevated intra-host spike diversity in people with advanced HIV infection is detected immediately after COVID-19 symptom onset, and early intra-host spike diversity predicts SARS-CoV-2 shedding duration among PWH. Analysis of longitudinal timepoints reveals rapid fluctuations in spike sequence populations, replacement of founder sequences by groups of new haplotypes, and positive selection at functionally important residues. These findings demonstrate remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern.
Identifiants
pubmed: 39174553
doi: 10.1038/s41467-024-51539-8
pii: 10.1038/s41467-024-51539-8
doi:
Substances chimiques
Spike Glycoprotein, Coronavirus
0
spike protein, SARS-CoV-2
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7240Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : AI005157
Informations de copyright
© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Références
Corey, L. et al. SARS-CoV-2 variants in patients with immunosuppression. N. Engl. J. Med. 385, 562–566 (2021).
pubmed: 34347959
pmcid: 8494465
doi: 10.1056/NEJMsb2104756
Markov, P. V. et al. The evolution of SARS-CoV-2. Nat. Rev. Microbiol 21, 361–379 (2023).
pubmed: 37020110
doi: 10.1038/s41579-023-00878-2
Tarhini, H. et al. Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectiousness among three immunocompromised patients: from prolonged viral shedding to SARS-CoV-2 Superinfection. J. Infect. Dis. 223, 1522–1527 (2021).
pubmed: 33556961
doi: 10.1093/infdis/jiab075
Gonzalez-Reiche, A. S. et al. Sequential intrahost evolution and onward transmission of SARS-CoV-2 variants. Nat. Commun. 14, 3235 (2023).
pubmed: 37270625
pmcid: 10239218
doi: 10.1038/s41467-023-38867-x
Choi, B. et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised Host. N. Engl. J. Med. 383, 2291–2293 (2020).
pubmed: 33176080
doi: 10.1056/NEJMc2031364
Weigang, S. et al. Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 patient as a source of immune escape variants. Nat. Commun. 12, 6405 (2021).
pubmed: 34737266
pmcid: 8568958
doi: 10.1038/s41467-021-26602-3
Cele, S. et al. SARS-CoV-2 prolonged infection during advanced HIV disease evolves extensive immune escape. Cell Host Microbe 30, 154–162.e155 (2022).
pubmed: 35120605
pmcid: 8758318
doi: 10.1016/j.chom.2022.01.005
Karim, F. et al. Clearance of persistent SARS-CoV-2 associates with increased neutralizing antibodies in advanced HIV disease post-ART initiation. Nat. Commun. 15, 2360 (2024).
pubmed: 38491050
pmcid: 10943233
doi: 10.1038/s41467-024-46673-2
Kemp, S. A. et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 592, 277–282 (2021).
pubmed: 33545711
pmcid: 7610568
doi: 10.1038/s41586-021-03291-y
Truong, T. T. et al. Increased viral variants in children and young adults with impaired humoral immunity and persistent SARS-CoV-2 infection: A consecutive case series. EBioMedicine 67, 103355 (2021).
pubmed: 33915337
pmcid: 8072072
doi: 10.1016/j.ebiom.2021.103355
Scherer, E. M. et al. SARS-CoV-2 Evolution and immune escape in immunocompromised patients. N. Engl. J. Med. 386, 2436–2438 (2022).
pubmed: 35675197
doi: 10.1056/NEJMc2202861
Chaguza, C. et al. Accelerated SARS-CoV-2 intrahost evolution leading to distinct genotypes during chronic infection. Cell Rep. Med 4, 100943 (2023).
pubmed: 36791724
pmcid: 9906997
doi: 10.1016/j.xcrm.2023.100943
Raglow, Z. et al. SARS-CoV-2 shedding and evolution in patients who were immunocompromised during the omicron period: a multicentre, prospective analysis. Lancet Microbe 5, e235–e246 (2024).
pubmed: 38286131
doi: 10.1016/S2666-5247(23)00336-1
Khatamzas, E. et al. Accumulation of mutations in antibody and CD8 T cell epitopes in a B cell depleted lymphoma patient with chronic SARS-CoV-2 infection. Nat. Commun. 13, 5586 (2022).
pubmed: 36151076
pmcid: 9508331
doi: 10.1038/s41467-022-32772-5
Ko, K. K. K. et al. Emergence of SARS-CoV-2 spike mutations during prolonged infection in immunocompromised hosts. Microbiol. Spectr. 10, 00791–00722 (2022).
doi: 10.1128/spectrum.00791-22
Chiara, M. et al. Next generation sequencing of SARS-CoV-2 genomes: challenges, applications and opportunities. Brief. Bioinform 22, 616–630 (2021).
pubmed: 33279989
doi: 10.1093/bib/bbaa297
Ramuta, M. D. et al. SARS-CoV-2 and other respiratory pathogens are detected in continuous air samples from congregate settings. Nat. Commun. 13, 4717 (2022).
pubmed: 35953484
pmcid: 9366802
doi: 10.1038/s41467-022-32406-w
Karthikeyan, S. et al. Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission. Nature 609, 101–108 (2022).
pubmed: 35798029
pmcid: 9433318
doi: 10.1038/s41586-022-05049-6
Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e819 (2020).
pubmed: 32697968
pmcid: 7332439
doi: 10.1016/j.cell.2020.06.043
Ko, S. H. et al. High-throughput, single-copy sequencing reveals SARS-CoV-2 spike variants coincident with mounting humoral immunity during acute COVID-19. PLOS Pathogens 17, e1009431 (2021).
Meiring, S. et al. Prolonged shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at high viral loads among hospitalized immunocompromised persons living with human immunodeficiency virus (HIV), South Africa. Clin. Infect. Dis. 75, e144–e156 (2022).
pubmed: 35134129
pmcid: 8903337
doi: 10.1093/cid/ciac077
Kleynhans, J. et al. Household transmission of severe acute respiratory syndrome coronavirus 2 from adult index cases with and without human immunodeficiency virus in South Africa, 2020–2021: a case-ascertained, prospective, observational household transmission study. Clin. Infect. Dis. 76, e71–e81 (2023).
pubmed: 35925613
doi: 10.1093/cid/ciac640
Hatcher, E. L. et al. Virus Variation Resource - improved response to emergent viral outbreaks. Nucleic Acids Res 45, D482–D490 (2017).
pubmed: 27899678
doi: 10.1093/nar/gkw1065
Aksamentov, I., Roemer, C., Hodcroft, E. & Neher, R. Nextclade: clade assignment, mutation calling and quality control for viral genomes. Journal of Open Source Software 6, https://doi.org/10.21105/joss.03773 (2021).
Balaban, M., Moshiri, N., Mai, U., Jia, X. & Mirarab, S. TreeCluster: clustering biological sequences using phylogenetic trees. PLOS ONE 14, e0221068 (2019).
pubmed: 31437182
pmcid: 6705769
doi: 10.1371/journal.pone.0221068
McCarthy, K. R. et al. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science, https://doi.org/10.1126/science.abf6950 (2021).
Hubbard, S. & Thornton, J. Naccess: Department of Biochemistry and Molecular Biology, University College London. Software available at http://www.bioinf.manchester.ac.uk/naccess/nacdownload.html (1993).
Zhang, J. et al. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science 372, 525–530 (2021).
pubmed: 33727252
pmcid: 8139424
doi: 10.1126/science.abf2303
Murrell, B. et al. FUBAR: A fast, unconstrained bayesian approximation for inferring selection. Mol. Biol. Evolution 30, 1196–1205 (2013).
doi: 10.1093/molbev/mst030
Karim, F. et al. Clearance of persistent SARS-CoV-2 associates with increased neutralizing antibodies in advanced HIV disease post-ART initiation. Nat. Commun. 15, 2360 (2024).
Motsoeneng, B. M. et al. Despite delayed kinetics, people living with HIV achieve equivalent antibody function after SARS-CoV-2 infection or vaccination. Front Immunol. 14, 1231276 (2023).
pubmed: 37600825
pmcid: 10435738
doi: 10.3389/fimmu.2023.1231276
Soumelis, V. et al. Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 98, 906–912 (2001).
pubmed: 11493432
doi: 10.1182/blood.V98.4.906
Sugawara, S. et al. People with HIV-1 demonstrate type 1 interferon refractoriness associated with upregulated USP18. J Virol 95, e01777–20 (2021).
Lei, X. et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat. Commun. 11, 3810 (2020).
pubmed: 32733001
pmcid: 7392898
doi: 10.1038/s41467-020-17665-9
Lokugamage, K. G. et al. Type I Interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV. J. Virol. 94, e1410–e1420 (2020).
doi: 10.1128/JVI.01410-20
Wang, S. et al. Modeling the viral dynamics of SARS-CoV-2 infection. Math. Biosci. 328, 108438 (2020).
pubmed: 32771304
pmcid: 7409942
doi: 10.1016/j.mbs.2020.108438
Haaland, R. E. et al. Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexual transmission of subtype A and C HIV-1. PLoS Pathog. 5, e1000274 (2009).
pubmed: 19165325
pmcid: 2621345
doi: 10.1371/journal.ppat.1000274
McCrone, J. T. & Lauring, A. S. Genetic bottlenecks in intraspecies virus transmission. Curr. Opin. Virol. 28, 20–25 (2018).
pubmed: 29107838
doi: 10.1016/j.coviro.2017.10.008
Walker, B. & McMichael, A. The T-cell response to HIV. Cold Spring Harb Perspect Med 2, a007054 (2012).
Hong, J. J., Chang, K. T. & Villinger, F. The Dynamics of T and B cells in lymph node during chronic HIV infection: TFH and HIV, unhappy dance partners? Front Immunol. 7, 522 (2016).
pubmed: 27920778
pmcid: 5118424
doi: 10.3389/fimmu.2016.00522
Gruenbach, M. et al. cART restores transient responsiveness to IFN Type 1 in HIV-infected humanized mice. J. Virol. 96, e0082722 (2022).
pubmed: 36250708
doi: 10.1128/jvi.00827-22
Rehr, M. et al. Emergence of polyfunctional CD8+ T cells after prolonged suppression of human immunodeficiency virus replication by antiretroviral therapy. J. Virol. 82, 3391–3404 (2008).
pubmed: 18199637
pmcid: 2268491
doi: 10.1128/JVI.02383-07
Sheng, W. H. et al. Evolution of hepatitis B serological markers in HIV-infected patients receiving highly active antiretroviral therapy. Clin. Infect. Dis. 45, 1221–1229 (2007).
pubmed: 17918088
doi: 10.1086/522173
Hung, C. C. et al. Clinical experience of the 23-valent capsular polysaccharide pneumococcal vaccination in HIV-1-infected patients receiving highly active antiretroviral therapy: a prospective observational study. Vaccine 22, 2006–2012 (2004).
pubmed: 15121313
doi: 10.1016/j.vaccine.2003.10.030
Alrubayyi, A. et al. Characterization of humoral and SARS-CoV-2 specific T cell responses in people living with HIV. Nat. Commun. 12, 5839 (2021).
pubmed: 34611163
pmcid: 8492866
doi: 10.1038/s41467-021-26137-7
Snyman, J. et al. Similar antibody responses against severe acute respiratory syndrome coronavirus 2 in individuals living without and with human immunodeficiency virus on antiretroviral therapy during the first south african infection wave. Clin. Infect. Dis. 75, e249–e256 (2022).
pubmed: 34472583
doi: 10.1093/cid/ciab758
Amicone, M. et al. Mutation rate of SARS-CoV-2 and emergence of mutators during experimental evolution. Evol. Med Public Health 10, 142–155 (2022).
pubmed: 35419205
pmcid: 8996265
doi: 10.1093/emph/eoac010
Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022).
pubmed: 36517603
pmcid: 9749650
doi: 10.1038/s41586-022-05542-y
Van Cleemput, J. et al. Organ-specific genome diversity of replication-competent SARS-CoV-2. Nat. Commun. 12, 6612 (2021).
pubmed: 34785663
pmcid: 8595628
doi: 10.1038/s41467-021-26884-7
Posada, D. & Crandall, K. A. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc. Natl Acad. Sci. USA 98, 13757–13762 (2001).
pubmed: 11717435
pmcid: 61114
doi: 10.1073/pnas.241370698
Hepler, N. L. et al. in Conference on Advances in Genome Biology and Technology (2016).
Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).
pubmed: 28100584
pmcid: 5340976
doi: 10.1101/gr.209601.116
Buschmann, T. DNABarcodes: an R package for the systematic construction of DNA sample tags. Bioinformatics 33, 920–922 (2016).
doi: 10.1093/bioinformatics/btw759
Lam, H. M., Ratmann, O. & Boni, M. F. Improved algorithmic complexity for the 3SEQ recombination detection algorithm. Mol. Biol. Evol. 35, 247–251 (2018).
pubmed: 29029186
doi: 10.1093/molbev/msx263
Salinas, N. R. & Little, D. P. 2matrix: A utility for indel coding and phylogenetic matrix concatenation(1.). Appl Plant Sci 2, 1300083 (2014).
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evolution 32, 268–274 (2014).
doi: 10.1093/molbev/msu300
Wibmer, C. K. et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med 27, 622–625 (2021).
pubmed: 33654292
doi: 10.1038/s41591-021-01285-x
Ko, S. H. et al. Intra-host single-genome sequences of SARS-CoV-2 spike from people without HIV and people living with HIV. Zenodo https://zenodo.org/doi/10.5281/zenodo.12744612 (2024).