Clinical-grade whole genome sequencing-based haplarithmisis enables all forms of preimplantation genetic testing.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
02 Sep 2024
Historique:
received: 08 12 2023
accepted: 08 08 2024
medline: 3 9 2024
pubmed: 3 9 2024
entrez: 2 9 2024
Statut: epublish

Résumé

High-throughput sequencing technologies have increasingly led to discovery of disease-causing genetic variants, primarily in postnatal multi-cell DNA samples. However, applying these technologies to preimplantation genetic testing (PGT) in nuclear or mitochondrial DNA from single or few-cells biopsied from in vitro fertilised (IVF) embryos is challenging. PGT aims to select IVF embryos without genetic abnormalities. Although genotyping-by-sequencing (GBS)-based haplotyping methods enabled PGT for monogenic disorders (PGT-M), structural rearrangements (PGT-SR), and aneuploidies (PGT-A), they are labour intensive, only partially cover the genome and are troublesome for difficult loci and consanguineous couples. Here, we devise a simple, scalable and universal whole genome sequencing haplarithmisis-based approach enabling all forms of PGT in a single assay. In a comparison to state-of-the-art GBS-based PGT for nuclear DNA, shallow sequencing-based PGT, and PCR-based PGT for mitochondrial DNA, our approach alleviates technical limitations by decreasing whole genome amplification artifacts by 68.4%, increasing breadth of coverage by at least 4-fold, and reducing wet-lab turn-around-time by ~2.5-fold. Importantly, this method enables trio-based PGT-A for aneuploidy origin, an approach we coin PGT-AO, detects translocation breakpoints, and nuclear and mitochondrial single nucleotide variants and indels in base-resolution.

Identifiants

pubmed: 39223156
doi: 10.1038/s41467-024-51508-1
pii: 10.1038/s41467-024-51508-1
doi:

Substances chimiques

DNA, Mitochondrial 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7164

Subventions

Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : EU952516

Informations de copyright

© 2024. The Author(s).

Références

McKusick, V. A. Mendelian inheritance in man and its online version, OMIM. Am. J. Hum. Genet. 80, 588–604 (2007).
Satam, H. et al. Next-generation sequencing technology: current trends and advancements. Biology 12, 997 (2023).
pubmed: 37508427 pmcid: 10376292 doi: 10.3390/biology12070997
Mastrorosa, F. K., Miller, D. E. & Eichler, E. E. Applications of long-read sequencing to Mendelian genetics. Genome Med 15, 42 (2023).
pubmed: 37316925 pmcid: 10266321 doi: 10.1186/s13073-023-01194-3
Sallevelt, S. et al. Diagnostic exome-based preconception carrier testing in consanguineous couples: results from the first 100 couples in clinical practice. Genet Med 23, 1125–1136 (2021).
pubmed: 33742171 pmcid: 8187149 doi: 10.1038/s41436-021-01116-x
Sallevelt, S. C. E. H. et al. A comprehensive strategy for exome-based preconception carrier screening. Genet Med 19, 583–592 (2017).
pubmed: 28492530 doi: 10.1038/gim.2016.153
Van Steijvoort, E. et al. Interest in expanded carrier screening among individuals and couples in the general population: systematic review of the literature. Hum. Reprod. Update 26, 335–355 (2020).
pubmed: 32099997 doi: 10.1093/humupd/dmaa001
Zhang, T. et al. Expanded preconception carrier screening in clinical practice: review of technology, guidelines, implementation challenges, and ethical quandaries. Clin. Obstet. Gynecol. 62, 217–227 (2019).
pubmed: 30908290 doi: 10.1097/GRF.0000000000000437
Eurostat. Women are having their first child at an older age. Eurostat (2020). Available at: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20200515-2 .
Khandwala, Y. S., Zhang, C. A., Lu, Y. & Eisenberg, M. L. The age of fathers in the USA is rising: an analysis of 168 867 480 births from 1972–2015. Hum. Reprod. 32, 2110–2116 (2017).
pubmed: 28938735 doi: 10.1093/humrep/dex267
Gruhn, J. R. et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science 365, 1466–1469 (2019).
pubmed: 31604276 pmcid: 7212007 doi: 10.1126/science.aav7321
Rahbari, R. et al. Timing, rates and spectra of human germline mutation. Nat. Genet 48, 126–133 (2016).
pubmed: 26656846 doi: 10.1038/ng.3469
Sloter, E. D. et al. Frequency of human sperm carrying structural aberrations of chromosome 1 increases with advancing age. Fertil. Steril. 87, 1077–1086 (2007).
pubmed: 17433321 doi: 10.1016/j.fertnstert.2006.08.112
Amberger, J. S., Bocchini, C. A., Scott, A. F. & Hamosh, A. OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res 47, D1038–d1043 (2019).
pubmed: 30445645 doi: 10.1093/nar/gky1151
Hughes, T. et al. A review on the motivations, decision-making factors, attitudes and experiences of couples using pre-implantation genetic testing for inherited conditions. Hum. Reprod. Update 27, 944–966 (2021).
pubmed: 33969393 doi: 10.1093/humupd/dmab013
Handyside, A. H. et al. Biopsy of human preimplantation embryos and sexing by DNA amplification. Lancet 1, 347–349 (1989).
pubmed: 2464730 doi: 10.1016/S0140-6736(89)91723-6
Handyside, A. H., Kontogianni, E. H., Hardy, K. & Winston, R. M. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344, 768–770 (1990).
pubmed: 2330030 doi: 10.1038/344768a0
Roche, K., Racowsky, C. & Harper, J. Utilization of preimplantation genetic testing in the USA. J. Assist Reprod. Genet 38, 1045–1053 (2021).
pubmed: 33904009 pmcid: 8190209 doi: 10.1007/s10815-021-02078-4
Spinella, F. et al. ESHRE PGT consortium data collection XXI: PGT analyses in 2018. Hum. Reprod. Open 2023, hoad010 (2023).
pubmed: 37091225 pmcid: 10121336 doi: 10.1093/hropen/hoad010
van Montfoort, A. et al. ESHRE PGT consortium data collection XIX-XX: PGT analyses from 2016 to 2017. Hum. Reprod. Open 2021, hoab024 (2021).
pubmed: 34322603 pmcid: 8313404 doi: 10.1093/hropen/hoab024
Bai, F. et al. Assisted reproductive technology service availability, efficacy and safety in mainland China: 2016. Hum. Reprod. 35, 446–452 (2020).
pubmed: 32020190 doi: 10.1093/humrep/dez245
Gleicher, N., Barad, D. H., Patrizio, P. & Orvieto, R. We have reached a dead end for preimplantation genetic testing for aneuploidy. Hum. Reprod. 37, 2730–2734 (2022).
pubmed: 35355062 doi: 10.1093/humrep/deac052
Simopoulou, M. et al. PGT-A: who and when? a systematic review and network meta-analysis of RCTs. J. Assist Reprod. Genet 38, 1939–1957 (2021).
pubmed: 34036455 pmcid: 8417193 doi: 10.1007/s10815-021-02227-9
Munné, S. et al. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: a multicenter randomized clinical trial. Fertil. Steril. 112, 1071–1079.e1077 (2019).
pubmed: 31551155 doi: 10.1016/j.fertnstert.2019.07.1346
Yan, J. et al. Live Birth with or without preimplantation genetic testing for aneuploidy. N. Engl. J. Med 385, 2047–2058 (2021).
pubmed: 34818479 doi: 10.1056/NEJMoa2103613
Mastenbroek, S., de Wert, G. & Adashi, E. Y. The Imperative of responsible innovation in reproductive medicine. N. Engl. J. Med 385, 2096–2100 (2021).
pubmed: 34818487 doi: 10.1056/NEJMsb2101718
Greco, E., Minasi, M. G. & Fiorentino, F. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N. Engl. J. Med 373, 2089–2090 (2015).
pubmed: 26581010 doi: 10.1056/NEJMc1500421
Viotti M. et al. Chromosomal, gestational, and neonatal outcomes of embryos classified as a mosaic by preimplantation genetic testing for aneuploidy. Fertil Steril, (2023).
Viotti, M. Preimplantation genetic testing for chromosomal abnormalities: aneuploidy, mosaicism, and structural rearrangements. Genes (Basel) 11, 602 (2020).
pubmed: 32485954 doi: 10.3390/genes11060602
Handyside, A. H. et al. Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J. Med Genet 47, 651–658 (2010).
pubmed: 19858130 doi: 10.1136/jmg.2009.069971
Zamani Esteki, M. et al. Concurrent whole-genome haplotyping and copy-number profiling of single cells. Am. J. Hum. Genet 96, 894–912 (2015).
pubmed: 25983246 pmcid: 4473724 doi: 10.1016/j.ajhg.2015.04.011
Masset, H. et al. Multi-centre evaluation of a comprehensive preimplantation genetic test through haplotyping-by-sequencing. Hum. Reprod. 34, 1608–1619 (2019).
pubmed: 31348829 doi: 10.1093/humrep/dez106
Masset, H. et al. Single-cell genome-wide concurrent haplotyping and copy-number profiling through genotyping-by-sequencing. Nucleic Acids Res 50, e63 (2022).
pubmed: 35212381 pmcid: 9226495 doi: 10.1093/nar/gkac134
Backenroth, D. et al. Haploseek: a 24-h all-in-one method for preimplantation genetic diagnosis (PGD) of monogenic disease and aneuploidy. Genet Med 21, 1390–1399 (2019).
pubmed: 30449887 doi: 10.1038/s41436-018-0351-7
Zeevi, D. A. et al. Expanded clinical validation of Haploseek for comprehensive preimplantation genetic testing. Genet Med 23, 1334–1340 (2021).
pubmed: 33772222 doi: 10.1038/s41436-021-01145-6
Backenroth D. et al. SHaploseek: a sequencing-only high-resolution implementation of comprehensive preimplantation genetic testing. Sci. Rep. 13, 18036 (2023).
De Witte, L. et al. GENType: all-in-one preimplantation genetic testing by pedigree haplotyping and copy number profiling suitable for third-party reproduction. Hum. Reprod. 37, 1678–1691 (2022).
pubmed: 35552408 doi: 10.1093/humrep/deac088
Griffin, D. K. & Ogur, C. PGT-SR: a comprehensive overview and a requiem for the interchromosomal effect. DNA 3, 41–64 (2023).
doi: 10.3390/dna3010004
Gui, B. et al. Chromosomal analysis of blastocysts from balanced chromosomal rearrangement carriers. Reproduction 151, 455–464 (2016).
pubmed: 26825930 doi: 10.1530/REP-16-0007
Sallevelt, S. C. et al. Preimplantation genetic diagnosis in mitochondrial DNA disorders: challenge and success. J. Med Genet 50, 125–132 (2013).
pubmed: 23339111 doi: 10.1136/jmedgenet-2012-101172
Zamani Esteki, M. et al. In vitro fertilization does not increase the incidence of de novo copy number alterations in fetal and placental lineages. Nat. Med 25, 1699–1705 (2019).
pubmed: 31686035 doi: 10.1038/s41591-019-0620-2
Haenel, Q., Laurentino, T. G., Roesti, M. & Berner, D. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol. Ecol. 27, 2477–2497 (2018).
pubmed: 29676042 doi: 10.1111/mec.14699
Gong T., Hayes V. M., Chan E. K. F. Detection of somatic structural variants from short-read next-generation sequencing data. Brief Bioinform. 22, bbaa056 (2021).
Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).
pubmed: 22962449 pmcid: 3436805 doi: 10.1093/bioinformatics/bts378
Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 15, R84 (2014).
pubmed: 24970577 pmcid: 4197822 doi: 10.1186/gb-2014-15-6-r84
Cameron, D. L. et al. GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res 27, 2050–2060 (2017).
pubmed: 29097403 pmcid: 5741059 doi: 10.1101/gr.222109.117
Chen, K. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 6, 677–681 (2009).
pubmed: 19668202 pmcid: 3661775 doi: 10.1038/nmeth.1363
Kumar, A. et al. Whole-genome risk prediction of common diseases in human preimplantation embryos. Nat. Med 28, 513–516 (2022).
pubmed: 35314819 pmcid: 8938270 doi: 10.1038/s41591-022-01735-0
Xie, P. et al. A novel multifunctional haplotyping-based preimplantation genetic testing for different genetic conditions. Hum. Reprod. 37, 2546–2559 (2022).
pubmed: 36066440 doi: 10.1093/humrep/deac190
Yuan, P. et al. A whole-genome sequencing-based novel preimplantation genetic testing method for de novo mutations combined with chromosomal balanced translocations. J. Assist Reprod. Genet 37, 2525–2533 (2020).
pubmed: 32783137 pmcid: 7550397 doi: 10.1007/s10815-020-01921-4
Murphy, N. M., Samarasekera, T. S., Macaskill, L., Mullen, J. & Rombauts, L. J. F. Genome sequencing of human in vitro fertilisation embryos for pathogenic variation screening. Sci. Rep. 10, 3795 (2020).
pubmed: 32123222 pmcid: 7052235 doi: 10.1038/s41598-020-60704-0
Chen, S. et al. Comprehensive preimplantation genetic testing by massively parallel sequencing. Hum. Reprod. 36, 236–247 (2021).
pubmed: 33306794
Xu, J. et al. Mapping allele with resolved carrier status of Robertsonian and reciprocal translocation in human preimplantation embryos. Proc. Natl Acad. Sci. USA 114, E8695–e8702 (2017).
pubmed: 28973897 pmcid: 5642733 doi: 10.1073/pnas.1715053114
Yan, L. et al. Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc. Natl Acad. Sci. USA 112, 15964–15969 (2015).
pubmed: 26712022 pmcid: 4702982 doi: 10.1073/pnas.1523297113
Peters, B. A. et al. Detection and phasing of single base de novo mutations in biopsies from human in vitro fertilized embryos by advanced whole-genome sequencing. Genome Res 25, 426–434 (2015).
pubmed: 25672852 pmcid: 4352880 doi: 10.1101/gr.181255.114
Zhai, F. et al. Preimplantation genetic testing for structural rearrangement based on low-coverage next-generation sequencing accurately discriminates between normal and carrier embryos for patients with translocations. Reprod. Biomed. Online 45, 473–480 (2022).
pubmed: 35780041 doi: 10.1016/j.rbmo.2022.05.012
Xia, Q. et al. Nanopore sequencing for detecting reciprocal translocation carrier status in preimplantation genetic testing. BMC Genomics 24, 1 (2023).
pubmed: 36593441 pmcid: 9809107 doi: 10.1186/s12864-022-09103-5
Xia, Y. et al. The first clinical validation of whole-genome screening on standard trophectoderm biopsies of preimplantation embryos. F&S Reports 5, 63–71 (2024).
Xia Y. et al. Genome-wide disease screening in early human embryos with primary template-directed amplification. Preprint at bioRxiv, 2021.2007.2006.451077 (2021).
van Prooyen Schuurman, L. et al. Clinical impact of additional findings detected by genome-wide non-invasive prenatal testing: follow-up results of the TRIDENT-2 study. Am. J. Hum. Genet 109, 1140–1152 (2022).
pubmed: 35659929 pmcid: 9247828 doi: 10.1016/j.ajhg.2022.04.018
Sachdev, N. M., McCulloh, D. H., Kramer, Y., Keefe, D. & Grifo, J. A. The reproducibility of trophectoderm biopsies in euploid, aneuploid, and mosaic embryos using independently verified next-generation sequencing (NGS): a pilot study. J. Assist Reprod. Genet 37, 559–571 (2020).
pubmed: 32112203 pmcid: 7125266 doi: 10.1007/s10815-020-01720-x
Orvieto, R. The reproducibility of trophectoderm biopsies - the chaos behind preimplantation genetic testing for aneuploidy. Eur. J. Obstet. Gynecol. Reprod. Biol. 254, 57–58 (2020).
pubmed: 32942075 doi: 10.1016/j.ejogrb.2020.07.052
Victor, A. R. et al. Assessment of aneuploidy concordance between clinical trophectoderm biopsy and blastocyst. Hum. Reprod. 34, 181–192 (2019).
pubmed: 30418565 doi: 10.1093/humrep/dey327
Gleicher, N., Patrizio, P., Mochizuki, L. & Barad, D. H. Previously reported and here added cases demonstrate euploid pregnancies followed by PGT-A as “mosaic” as well as “aneuploid” designated embryos. Reprod. Biol. Endocrinol. 21, 25 (2023).
pubmed: 36890559 pmcid: 9993652 doi: 10.1186/s12958-023-01077-7
Yang, M. et al. Depletion of aneuploid cells in human embryos and gastruloids. Nat. Cell Biol. 23, 314–321 (2021).
pubmed: 33837289 doi: 10.1038/s41556-021-00660-7
Rana, B. et al. Identifying parental and cell-division origins of aneuploidy in the human blastocyst. Am. J. Hum. Genet 110, 565–574 (2023).
pubmed: 36977411 pmcid: 10119141 doi: 10.1016/j.ajhg.2023.03.003
van der Meij, K. R. M. et al. Experiences of pregnant women with genome-wide non-invasive prenatal testing in a national screening program. Eur. J. Hum. Genet 31, 555–561 (2023).
pubmed: 36481825 doi: 10.1038/s41431-022-01248-x
Essers, R. et al. Prevalence of chromosomal alterations in first-trimester spontaneous pregnancy loss. Nat. Med 29, 3233–3242 (2023).
pubmed: 37996709 pmcid: 10719097 doi: 10.1038/s41591-023-02645-5
de Wert G., & Dondorp, W. Human Reproductive Genetics in Medically Assisted Reproduction: Ethical Considerations. In: Textbook Human Reproductive Genetics. (eds) Viville S., Sermon, K. D. (Cambridge University Press, 2023).
Souche, E. et al. Recommendations for whole genome sequencing in diagnostics for rare diseases. Eur. J. Hum. Genet 30, 1017–1021 (2022).
pubmed: 35577938 pmcid: 9437083 doi: 10.1038/s41431-022-01113-x
Kothiyal, P., Wong, W. S. W., Bodian, D. L. & Niederhuber, J. E. Mendelian inconsistent signatures from 1314 ancestrally diverse family trios distinguish biological variation from sequencing error. J. Comput Biol. 26, 405–419 (2019).
pubmed: 30942611 pmcid: 6533806 doi: 10.1089/cmb.2018.0253
Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012).
pubmed: 22914163 pmcid: 3548427 doi: 10.1038/nature11396
Shamonki, M. I., Jin, H., Haimowitz, Z. & Liu, L. Proof of concept: preimplantation genetic screening without embryo biopsy through analysis of cell-free DNA in spent embryo culture media. Fertil. Steril. 106, 1312–1318 (2016).
pubmed: 27565258 doi: 10.1016/j.fertnstert.2016.07.1112
Schobers, G. et al. Liquid biopsy: state of reproductive medicine and beyond. Hum. Reprod. 36, 2824–2839 (2021).
pubmed: 34562078 pmcid: 8523207 doi: 10.1093/humrep/deab206
Rubio, C. et al. Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am. J. Obstet. Gynecol. 223, 751.e751–751.e713 (2020).
doi: 10.1016/j.ajog.2020.04.035
Chen Y. et al. DNA methylome reveals cellular origin of cell-free DNA in spent medium of human preimplantation embryos. J. Clin. Invest. 131, e146051 (2021).
van Dijk, W. et al. Embryo tracking system for high-throughput sequencing-based preimplantation genetic testing. Hum. Reprod. 37, 2700–2708 (2022).
pubmed: 36149256 pmcid: 9627733 doi: 10.1093/humrep/deac208
Vasimuddin M., Misra S., Li H., Aluru S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 314–324 (2019).
Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics 25, 1841–1842 (2009).
pubmed: 19468054 pmcid: 2705236 doi: 10.1093/bioinformatics/btp328
Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32, 292–294 (2016).
pubmed: 26428292 doi: 10.1093/bioinformatics/btv566
Danecek P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
Van der, Auwera, Geraldine. A., Brian, D. OC. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra 1st edn. (O’Reilly Media, 2020).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/ (Vienna, Austria, 2021).
Knaus, B. J. & Grünwald, N. J. vcfr: a package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 17, 44–53 (2017).
pubmed: 27401132 doi: 10.1111/1755-0998.12549
Scheinin, I. et al. DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly. Genome Res 24, 2022–2032 (2014).
pubmed: 25236618 pmcid: 4248318 doi: 10.1101/gr.175141.114
Nilsen, G. et al. Copynumber: efficient algorithms for single- and multi-track copy number segmentation. BMC Genomics 13, 591 (2012).
pubmed: 23442169 pmcid: 3582591 doi: 10.1186/1471-2164-13-591
Conlin, L. K. et al. Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis. Hum. Mol. Genet 19, 1263–1275 (2010).
pubmed: 20053666 pmcid: 3146011 doi: 10.1093/hmg/ddq003
Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016).
pubmed: 26647377 doi: 10.1093/bioinformatics/btv710
Chinnery, P. F., Howell, N., Lightowlers, R. N. & Turnbull, D. M. Molecular pathology of MELAS and MERRF. The relationship between mutation load and clinical phenotypes. Brain 120, 1713–1721 (1997).
pubmed: 9365365 doi: 10.1093/brain/120.10.1713
Lott, M. T. et al. mtDNA variation and analysis using mitomap and mitomaster. Curr. Protoc. Bioinforma. 44, 1.23.21–26 (2013).
doi: 10.1002/0471250953.bi0123s44
McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297–1303 (2010).
pubmed: 20644199 pmcid: 2928508 doi: 10.1101/gr.107524.110
Wickham H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016).
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize Implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
pubmed: 24930139 doi: 10.1093/bioinformatics/btu393
A. K. ggpubr: ‘ggplot2’ Based Publication Ready Plots (2023).
Wilke C. O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’ (2020).

Auteurs

Anouk E J Janssen (AEJ)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

Rebekka M Koeck (RM)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

Rick Essers (R)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

Ping Cao (P)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

Wanwisa van Dijk (W)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Marion Drüsedau (M)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Jeroen Meekels (J)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Burcu Yaldiz (B)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Maartje van de Vorst (M)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Bart de Koning (B)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Debby M E I Hellebrekers (DMEI)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Servi J C Stevens (SJC)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Su Ming Sun (SM)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Malou Heijligers (M)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Sonja A de Munnik (SA)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Chris M J van Uum (CMJ)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Jelle Achten (J)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Lars Hamers (L)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Marjan Naghdi (M)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
Faculty of Psychology and Neuroscience, Section Applied Social Psychology, Maastricht University, Maastricht, The Netherlands.

Lisenka E L M Vissers (LELM)

Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands.

Ron J T van Golde (RJT)

Department of Obstetrics and Gynaecology, GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

Guido de Wert (G)

Department of Health, Ethics and Society, GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
CAPHRI Research Institute for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands.

Jos C F M Dreesen (JCFM)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Christine de Die-Smulders (C)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

Edith Coonen (E)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
Department of Obstetrics and Gynaecology, GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

Han G Brunner (HG)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands.

Arthur van den Wijngaard (A)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Aimee D C Paulussen (ADC)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

Masoud Zamani Esteki (M)

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands. masoud.zamaniesteki@mumc.nl.
Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands. masoud.zamaniesteki@mumc.nl.
Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden. masoud.zamaniesteki@mumc.nl.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH