Fully automated epicardial adipose tissue volume quantification with deep learning and relationship with CAC score and micro/macrovascular complications in people living with type 2 diabetes: the multicenter EPIDIAB study.


Journal

Cardiovascular diabetology
ISSN: 1475-2840
Titre abrégé: Cardiovasc Diabetol
Pays: England
ID NLM: 101147637

Informations de publication

Date de publication:
03 Sep 2024
Historique:
received: 01 07 2024
accepted: 19 08 2024
medline: 4 9 2024
pubmed: 4 9 2024
entrez: 3 9 2024
Statut: epublish

Résumé

The aim of this study (EPIDIAB) was to assess the relationship between epicardial adipose tissue (EAT) and the micro and macrovascular complications (MVC) of type 2 diabetes (T2D). EPIDIAB is a post hoc analysis from the AngioSafe T2D study, which is a multicentric study aimed at determining the safety of antihyperglycemic drugs on retina and including patients with T2D screened for diabetic retinopathy (DR) (n = 7200) and deeply phenotyped for MVC. Patients included who had undergone cardiac CT for CAC (Coronary Artery Calcium) scoring after inclusion (n = 1253) were tested with a validated deep learning segmentation pipeline for EAT volume quantification. Median age of the study population was 61 [54;67], with a majority of men (57%) a median duration of the disease 11 years [5;18] and a mean HbA1c of7.8 ± 1.4%. EAT was significantly associated with all traditional CV risk factors. EAT volume significantly increased with chronic kidney disease (CKD vs no CKD: 87.8 [63.5;118.6] vs 82.7 mL [58.8;110.8], p = 0.008), coronary artery disease (CAD vs no CAD: 112.2 [82.7;133.3] vs 83.8 mL [59.4;112.1], p = 0.0004, peripheral arterial disease (PAD vs no PAD: 107 [76.2;141] vs 84.6 mL[59.2; 114], p = 0.0005 and elevated CAC score (> 100 vs  < 100 AU: 96.8 mL [69.1;130] vs 77.9 mL [53.8;107.7], p < 0.0001). By contrast, EAT volume was neither associated with DR, nor with peripheral neuropathy. We further evidenced a subgroup of patients with high EAT volume and a null CAC score. Interestingly, this group were more likely to be composed of young women with a high BMI, a lower duration of T2D, a lower prevalence of microvascular complications, and a higher inflammatory profile. Fully-automated EAT volume quantification could provide useful information about the risk of both renal and macrovascular complications in T2D patients.

Sections du résumé

BACKGROUND BACKGROUND
The aim of this study (EPIDIAB) was to assess the relationship between epicardial adipose tissue (EAT) and the micro and macrovascular complications (MVC) of type 2 diabetes (T2D).
METHODS METHODS
EPIDIAB is a post hoc analysis from the AngioSafe T2D study, which is a multicentric study aimed at determining the safety of antihyperglycemic drugs on retina and including patients with T2D screened for diabetic retinopathy (DR) (n = 7200) and deeply phenotyped for MVC. Patients included who had undergone cardiac CT for CAC (Coronary Artery Calcium) scoring after inclusion (n = 1253) were tested with a validated deep learning segmentation pipeline for EAT volume quantification.
RESULTS RESULTS
Median age of the study population was 61 [54;67], with a majority of men (57%) a median duration of the disease 11 years [5;18] and a mean HbA1c of7.8 ± 1.4%. EAT was significantly associated with all traditional CV risk factors. EAT volume significantly increased with chronic kidney disease (CKD vs no CKD: 87.8 [63.5;118.6] vs 82.7 mL [58.8;110.8], p = 0.008), coronary artery disease (CAD vs no CAD: 112.2 [82.7;133.3] vs 83.8 mL [59.4;112.1], p = 0.0004, peripheral arterial disease (PAD vs no PAD: 107 [76.2;141] vs 84.6 mL[59.2; 114], p = 0.0005 and elevated CAC score (> 100 vs  < 100 AU: 96.8 mL [69.1;130] vs 77.9 mL [53.8;107.7], p < 0.0001). By contrast, EAT volume was neither associated with DR, nor with peripheral neuropathy. We further evidenced a subgroup of patients with high EAT volume and a null CAC score. Interestingly, this group were more likely to be composed of young women with a high BMI, a lower duration of T2D, a lower prevalence of microvascular complications, and a higher inflammatory profile.
CONCLUSIONS CONCLUSIONS
Fully-automated EAT volume quantification could provide useful information about the risk of both renal and macrovascular complications in T2D patients.

Identifiants

pubmed: 39227844
doi: 10.1186/s12933-024-02411-y
pii: 10.1186/s12933-024-02411-y
doi:

Types de publication

Journal Article Multicenter Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

328

Informations de copyright

© 2024. The Author(s).

Références

Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, et al. Pericardial Fat, Visceral Abdominal Fat, Cardiovascular Disease Risk Factors, and Vascular Calcification in a Community-Based Sample: The Framingham Heart Study. Circulation. 2008;117(5):605–13.
doi: 10.1161/CIRCULATIONAHA.107.743062 pubmed: 18212276
Tchernof A, Despres JP. Pathophysiology of Human Visceral Obesity: An Update. Physiol Rev. 2013;93(1):359–404.
doi: 10.1152/physrev.00033.2011 pubmed: 23303913
Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia. 2016;59(6):1075–88.
doi: 10.1007/s00125-016-3933-4 pubmed: 27039901 pmcid: 4861754
Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022;19(9):593–606.
doi: 10.1038/s41569-022-00679-9 pubmed: 35296869 pmcid: 8926097
Gaborit B, Sengenes C, Ancel P, Jacquier A, Dutour A. Role of Epicardial Adipose Tissue in Health and Disease: A Matter of Fat? Compr Physiol. 2017;7(3):1051–82.
doi: 10.1002/cphy.c160034 pubmed: 28640452
Karastergiou K, Evans I, Ogston N, Miheisi N, Nair D, Kaski JC, et al. Epicardial adipokines in obesity and coronary artery disease induce atherogenic changes in monocytes and endothelial cells. Arterioscler Thromb Vasc Biol. 2010;30(7):1340–6.
doi: 10.1161/ATVBAHA.110.204719 pubmed: 20395594
Hirata Y, Tabata M, Kurobe H, Motoki T, Akaike M, Nishio C, et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol. 2011;58(3):248–55.
doi: 10.1016/j.jacc.2011.01.048 pubmed: 21737014
Gaborit B, Venteclef N, Ancel P, Pelloux V, Gariboldi V, Leprince P, et al. Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovasc Res. 2015;108(1):62–73.
doi: 10.1093/cvr/cvv208 pubmed: 26239655
Oikonomou EK, Williams MC, Kotanidis CP, Desai MY, Marwan M, Antonopoulos AS, et al. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. Eur Heart J. 2019;40(43):3529–43.
doi: 10.1093/eurheartj/ehz592 pubmed: 31504423 pmcid: 6855141
Kotanidis CP, Antoniades C. Perivascular Fat Imaging by Computed Tomography: A Virtual Guide. Br J Pharmacol. 2021. https://doi.org/10.1111/bph.15634 .
doi: 10.1111/bph.15634 pubmed: 34296764
Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Hutt Centeno E, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet. 2018;392(10151):929–39.
doi: 10.1016/S0140-6736(18)31114-0 pubmed: 30170852 pmcid: 6137540
Mahabadi AA, Berg MH, Lehmann N, Kälsch H, Bauer M, Kara K, et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol. 2013;61(13):1388–95.
doi: 10.1016/j.jacc.2012.11.062 pubmed: 23433560
Chan K, Wahome E, Tsiachristas A, Antonopoulos AS, Patel P, Lyasheva M, et al. Inflammatory risk and cardiovascular events in patients without obstructive coronary artery disease: the ORFAN multicentre, longitudinal cohort study. Lancet. 2024;S0140–6736(24):00596–8.
Gaborit B, Kober F, Jacquier A, Moro PJ, Flavian A, Quilici J, et al. Epicardial fat volume is associated with coronary microvascular response in healthy subjects: a pilot study. Obesity (Silver Spring). 2012;20(6):1200–5.
doi: 10.1038/oby.2011.283 pubmed: 21979392
Mahabadi AA, Lehmann N, Kälsch H, Robens T, Bauer M, Dykun I, et al. Association of epicardial adipose tissue with progression of coronary artery calcification is more pronounced in the early phase of atherosclerosis: results from the Heinz Nixdorf recall study. JACC Cardiovasc Imaging. 2014;7(9):909–16.
doi: 10.1016/j.jcmg.2014.07.002 pubmed: 25190138
Li Y, Liu B, Li Y, Jing X, Deng S, Yan Y, et al. Epicardial fat tissue in patients with diabetes mellitus: a systematic review and meta-analysis. Cardiovasc Diabetol. 2019;18(1):3.
doi: 10.1186/s12933-019-0807-3 pubmed: 30630489 pmcid: 6327515
Moreno-Santos I, Pérez-Belmonte LM, Macías-González M, Mataró MJ, Castellano D, López-Garrido M, et al. Type 2 diabetes is associated with decreased PGC1α expression in epicardial adipose tissue of patients with coronary artery disease. J Transl Med. 2016;14(1):243.
doi: 10.1186/s12967-016-0999-1 pubmed: 27542888 pmcid: 4992233
Ojha S, Fainberg HP, Wilson V, Pelella G, Castellanos M, May ST, et al. Gene pathway development in human epicardial adipose tissue during early life. JCI Insight. 2016;1(13).
doi: 10.1172/jci.insight.87460 pubmed: 27699231 pmcid: 5033935
Antoniades C, Tousoulis D, Vavlukis M, Fleming I, Duncker DJ, Eringa E, et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers. Eur Heart J. 2023;44(38):3827–44.
doi: 10.1093/eurheartj/ehad484 pubmed: 37599464 pmcid: 10568001
Gaborit B, Kober F, Jacquier A, Moro PJ, Cuisset T, Boullu S, et al. Assessment of epicardial fat volume and myocardial triglyceride content in severely obese subjects: relationship to metabolic profile, cardiac function and visceral fat. Int J Obes (Lond). 2012;36(3):422–30.
doi: 10.1038/ijo.2011.117 pubmed: 21730964
Bartoli A, Fournel J, Ait-Yahia L, Cadour F, Tradi F, Ghattas B, et al. Automatic Deep-Learning Segmentation of Epicardial Adipose Tissue from Low-Dose Chest CT and Prognosis Impact on COVID-19. Cells. 2022;11(6):1034.
doi: 10.3390/cells11061034 pubmed: 35326485 pmcid: 8947414
Gaborit B, Julla JB, Besbes S, Proust M, Vincentelli C, Alos B, et al. Glucagon-like Peptide 1 Receptor Agonists, Diabetic Retinopathy and Angiogenesis: The AngioSafe Type 2 Diabetes Study. J Clin Endocrinol Metab. 2020. https://doi.org/10.1210/clinem/dgz069 .
doi: 10.1210/clinem/dgz069 pubmed: 31589290
Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677–82.
doi: 10.1016/S0161-6420(03)00475-5 pubmed: 13129861
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30(9):1323–41.
doi: 10.1016/j.mri.2012.05.001 pubmed: 22770690 pmcid: 3466397
Kim WH, Kim CG, Kim DW. Optimal CT Number Range for Adipose Tissue When Determining Lean Body Mass in Whole-Body F-18 FDG PET/CT Studies. Nucl Med Mol Imaging. 2012;46(4):294–9.
doi: 10.1007/s13139-012-0175-3 pubmed: 24900077 pmcid: 4043057
Oka T, Yamamoto H, Ohashi N, Kitagawa T, Kunita E, Utsunomiya H, et al. Association between epicardial adipose tissue volume and characteristics of non-calcified plaques assessed by coronary computed tomographic angiography. Int J Cardiol. 2012;161(1):45–9.
doi: 10.1016/j.ijcard.2011.04.021 pubmed: 21570136
Commandeur F, Goeller M, Razipour A, Cadet S, Hell MM, Kwiecinski J, et al. Fully Automated CT Quantification of Epicardial Adipose Tissue by Deep Learning: A Multicenter Study. Radiol Artif Intell. 2019;1(6).
doi: 10.1148/ryai.2019190045 pubmed: 32090206 pmcid: 6884062
Commandeur F, Goeller M, Betancur J, Cadet S, Doris M, Chen X, et al. Deep Learning for Quantification of Epicardial and Thoracic Adipose Tissue From Non-Contrast CT. IEEE Trans Med Imaging. 2018;37(8):1835–46.
doi: 10.1109/TMI.2018.2804799 pubmed: 29994362 pmcid: 6076348
Doukbi E, Ancel P, Dutour A, Soghomonian A, Ahmed S, Castejon V, et al. Human epicardial fat has a beige profile and contains higher type 2 innate lymphoid cells than subcutaneous fat. Obesity (Silver Spring). 2024. https://doi.org/10.1002/oby.24023 .
doi: 10.1002/oby.24023 pubmed: 38747118
Liu F, Wang H, Feng W, Ye X, Sun X, Jiang C, et al. Type 1 innate lymphoid cells are associated with type 2 diabetes. Diabetes Metab. 2019;45(4):341–6.
doi: 10.1016/j.diabet.2018.08.005 pubmed: 30189343
Diamond C, Pansini M, Hamid A, Eichert N, Pandya P, Ali SN, et al. Quantitative imaging reveals steatosis and fibro-inflammation in multiple organs in people with type 2 diabetes: a real-world study. Diabetes. 2024. https://doi.org/10.2337/db23-0926 .
doi: 10.2337/db23-0926 pubmed: 38748492 pmcid: 11262045
Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat Rev Immunol. 2019;19(12):734–46.
doi: 10.1038/s41577-019-0213-9 pubmed: 31501536
Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119–31.
doi: 10.1056/NEJMoa1707914 pubmed: 28845751
Raggi P, Gadiyaram V, Zhang C, Chen Z, Lopaschuk G, Stillman AE. Statins Reduce Epicardial Adipose Tissue Attenuation Independent of Lipid Lowering: A Potential Pleiotropic Effect. J Am Heart Assoc. 2019;8(12).
doi: 10.1161/JAHA.119.013104 pubmed: 31190609 pmcid: 6645620
Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009;119(12):1661–70.
doi: 10.1161/CIRCULATIONAHA.108.821181 pubmed: 19289637
Azul L, Leandro A, Boroumand P, Klip A, Seiça R, Sena CM. Increased inflammation, oxidative stress and a reduction in antioxidant defense enzymes in perivascular adipose tissue contribute to vascular dysfunction in type 2 diabetes. Free Radic Biol Med. 2020;146:264–74.
doi: 10.1016/j.freeradbiomed.2019.11.002 pubmed: 31698080
Cosson E, Nguyen MT, Rezgani I, Tatulashvili S, Sal M, Berkane N, et al. Epicardial adipose tissue volume and coronary calcification among people living with diabetes: a cross-sectional study. Cardiovasc Diabetol. 2021;20(1):35.
doi: 10.1186/s12933-021-01225-6 pubmed: 33546697 pmcid: 7863354
Cosson E, Nguyen MT, Rezgani I, Berkane N, Pinto S, Bihan H, et al. Epicardial adipose tissue volume and myocardial ischemia in asymptomatic people living with diabetes: a cross-sectional study. Cardiovasc Diabetol. 2021;20(1):224.
doi: 10.1186/s12933-021-01420-5 pubmed: 34819079 pmcid: 8613918
Wang Z, Huang Z, Wang X. The Correlation between Region-specific Epicardial Adipose Tissue and Myocardial Ischemia Defined by CT-FFR in Type 2 Diabetes Mellitus Patients. Curr Med Imaging. 2024. https://doi.org/10.2174/0115734056291770240105101731 .
doi: 10.2174/0115734056291770240105101731 pubmed: 39206480
Sardu C, D’Onofrio N, Torella M, Portoghese M, Loreni F, Mureddu S, et al. Pericoronary fat inflammation and Major Adverse Cardiac Events (MACE) in prediabetic patients with acute myocardial infarction: effects of metformin. Cardiovasc Diabetol. 2019;18(1):126.
doi: 10.1186/s12933-019-0931-0 pubmed: 31570103 pmcid: 6767640
Wang TD, Lee WJ, Shih FY, Huang CH, Chang YC, Chen WJ, et al. Relations of epicardial adipose tissue measured by multidetector computed tomography to components of the metabolic syndrome are region-specific and independent of anthropometric indexes and intraabdominal visceral fat. J Clin Endocrinol Metab. 2009;94(2):662–9.
doi: 10.1210/jc.2008-0834 pubmed: 19050055
Gaborit B, Dutour A. Looking beyond ectopic fat amount: A SMART method to quantify epicardial adipose tissue density. Eur J Prev Cardiol. 2017;24(6):657–9.
doi: 10.1177/2047487317689976 pubmed: 28117619
Christensen RH, von Scholten BJ, Hansen CS, Jensen MT, Vilsbøll T, Rossing P, et al. Epicardial adipose tissue predicts incident cardiovascular disease and mortality in patients with type 2 diabetes. Cardiovasc Diabetol. 2019;18(1):114.
doi: 10.1186/s12933-019-0917-y pubmed: 31470858 pmcid: 6716926

Auteurs

Bénédicte Gaborit (B)

Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France. benedicte.gaborit@ap-hm.fr.
Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, Chemin des Bourrely, APHM, Hôpital Nord, 13915 Marseille Cedex 20, Marseille, France. benedicte.gaborit@ap-hm.fr.

Jean Baptiste Julla (JB)

IMMEDIAB Laboratory, Institut Necker Enfants Malades (INEM), CNRS UMR 8253, INSERM U1151, Université Paris Cité, 75015, Paris, France.
Diabetology and Endocrinology Department, Féderation de Diabétologie, Université Paris Cité, Lariboisière Hospital, APHP, 75015, Paris, France.

Joris Fournel (J)

Aix Marseille Univ, CNRS, CRMBM, Marseille, France.

Patricia Ancel (P)

Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.

Astrid Soghomonian (A)

Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.
Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, Chemin des Bourrely, APHM, Hôpital Nord, 13915 Marseille Cedex 20, Marseille, France.

Camille Deprade (C)

Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.
Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, Chemin des Bourrely, APHM, Hôpital Nord, 13915 Marseille Cedex 20, Marseille, France.

Adèle Lasbleiz (A)

Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.
Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, Chemin des Bourrely, APHM, Hôpital Nord, 13915 Marseille Cedex 20, Marseille, France.
Aix Marseille Univ, CNRS, CRMBM, Marseille, France.

Marie Houssays (M)

Medical Evaluation Department, Assistance-Publique Hôpitaux de Marseille, CIC-CPCET, 13005, Marseille, France.

Badih Ghattas (B)

Aix Marseille School of Economics, Aix Marseille University, CNRS, Marseille, France.

Pierre Gascon (P)

Centre Monticelli Paradis, 433 Bis Rue Paradis, 13008, Marseille, France.

Maud Righini (M)

Ophtalmology Department, Assistance-Publique Hôpitaux de Marseille, Aix-Marseille Univ, 13005, Marseille, France.

Frédéric Matonti (F)

Centre Monticelli Paradis, 433 Bis Rue Paradis, 13008, Marseille, France.
National Center for Scientific Research (CNRS), Timone Neuroscience Institute (INT), Aix Marseille Univ, 13008, Marseille, France.

Nicolas Venteclef (N)

IMMEDIAB Laboratory, Institut Necker Enfants Malades (INEM), CNRS UMR 8253, INSERM U1151, Université Paris Cité, 75015, Paris, France.

Louis Potier (L)

IMMEDIAB Laboratory, Institut Necker Enfants Malades (INEM), CNRS UMR 8253, INSERM U1151, Université Paris Cité, 75015, Paris, France.
Diabetology and Endocrinology Department, Fédération de Diabétologie, Bichat Hospital, Paris, France.

Jean François Gautier (JF)

IMMEDIAB Laboratory, Institut Necker Enfants Malades (INEM), CNRS UMR 8253, INSERM U1151, Université Paris Cité, 75015, Paris, France.
Diabetology and Endocrinology Department, Féderation de Diabétologie, Université Paris Cité, Lariboisière Hospital, APHP, 75015, Paris, France.

Noémie Resseguier (N)

Support Unit for Clinical Research and Economic Evaluation, Assistance Publique-Hôpitaux de Marseille, 13385, Marseille, France.
Aix-Marseille Univ, EA 3279 CEReSS-Health Service Research and Quality of Life Center, Marseille, France.

Axel Bartoli (A)

Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
Department of Radiology, Hôpital de la TIMONE, AP-HM, Marseille, France.

Florian Mourre (F)

Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.
Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, Chemin des Bourrely, APHM, Hôpital Nord, 13915 Marseille Cedex 20, Marseille, France.

Patrice Darmon (P)

Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.
Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, Chemin des Bourrely, APHM, Hôpital Nord, 13915 Marseille Cedex 20, Marseille, France.

Alexis Jacquier (A)

Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
Department of Radiology, Hôpital de la TIMONE, AP-HM, Marseille, France.

Anne Dutour (A)

Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.
Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, Chemin des Bourrely, APHM, Hôpital Nord, 13915 Marseille Cedex 20, Marseille, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH