Case reports of persistent SARS-CoV-2 infection outline within-host viral evolution in immunocompromised patients.


Journal

Virology journal
ISSN: 1743-422X
Titre abrégé: Virol J
Pays: England
ID NLM: 101231645

Informations de publication

Date de publication:
03 Sep 2024
Historique:
received: 29 05 2024
accepted: 21 08 2024
medline: 4 9 2024
pubmed: 4 9 2024
entrez: 3 9 2024
Statut: epublish

Résumé

SARS-CoV-2 is responsible for the ongoing global pandemic, and the continuous emergence of novel variants threatens fragile populations, such as immunocompromised patients. This subgroup of patients seems to be seriously affected by intrahost viral changes, as the pathogens, which are keen to cause replication inefficiency, affect the impaired immune system, preventing efficient clearance of the virus. Therefore, these patients may represent an optimal reservoir for the development of new circulating SARS-CoV-2 variants. The following study aimed to investigate genomic changes in SARS-CoV-2-positive immunocompromised patients over time. SARS-CoV-2-positive nasopharyngeal swabs were collected at different time points for each patient (patient A and patient B), extracted and then analyzed through next-generation sequencing (NGS). The resulting sequences were examined to determine mutation frequencies, describing viral evolution over time. Patient A was a 53-year-old patient with onco-hematological disease with prolonged infection lasting for 51 days from May 28th to July 18th, 2022. Three confirmed SARS-CoV-2-positive samples were collected on May 28th, June 15th and July 4th. Patient B was 75 years old and had onco-hematological disease with prolonged infection lasting for 146 days. Two confirmed positive SARS-CoV-2 samples were collected at the following time points: May 21st and August 18th. Heat map construction provided evidence of gain and/or loss of mutations over time for both patients, suggesting within-host genomic evolution of the virus. In addition, mutation polymorphisms and changes in the SARS-CoV-2 lineage were observed in Patient B. Sequence analysis revealed high mutational pattern variability, reflecting the high complexity of viral replication dynamics in fragile patients.

Sections du résumé

BACKGROUND BACKGROUND
SARS-CoV-2 is responsible for the ongoing global pandemic, and the continuous emergence of novel variants threatens fragile populations, such as immunocompromised patients. This subgroup of patients seems to be seriously affected by intrahost viral changes, as the pathogens, which are keen to cause replication inefficiency, affect the impaired immune system, preventing efficient clearance of the virus. Therefore, these patients may represent an optimal reservoir for the development of new circulating SARS-CoV-2 variants. The following study aimed to investigate genomic changes in SARS-CoV-2-positive immunocompromised patients over time.
METHODS METHODS
SARS-CoV-2-positive nasopharyngeal swabs were collected at different time points for each patient (patient A and patient B), extracted and then analyzed through next-generation sequencing (NGS). The resulting sequences were examined to determine mutation frequencies, describing viral evolution over time.
CASE PRESENTATION METHODS
Patient A was a 53-year-old patient with onco-hematological disease with prolonged infection lasting for 51 days from May 28th to July 18th, 2022. Three confirmed SARS-CoV-2-positive samples were collected on May 28th, June 15th and July 4th. Patient B was 75 years old and had onco-hematological disease with prolonged infection lasting for 146 days. Two confirmed positive SARS-CoV-2 samples were collected at the following time points: May 21st and August 18th.
CONCLUSION CONCLUSIONS
Heat map construction provided evidence of gain and/or loss of mutations over time for both patients, suggesting within-host genomic evolution of the virus. In addition, mutation polymorphisms and changes in the SARS-CoV-2 lineage were observed in Patient B. Sequence analysis revealed high mutational pattern variability, reflecting the high complexity of viral replication dynamics in fragile patients.

Identifiants

pubmed: 39227954
doi: 10.1186/s12985-024-02483-y
pii: 10.1186/s12985-024-02483-y
doi:

Types de publication

Journal Article Case Reports

Langues

eng

Sous-ensembles de citation

IM

Pagination

210

Subventions

Organisme : NextGenerationEU-MUR PNRR Extended Partnership initiative on Emerging Infectious Diseases
ID : PE00000007
Organisme : NextGenerationEU-MUR PNRR Extended Partnership initiative on Emerging Infectious Diseases
ID : INF-ACT

Informations de copyright

© 2024. The Author(s).

Références

Lee J-S, Yun KW, Jeong H, Kim B, Kim MJ, Park JH, et al. SARS-CoV-2 shedding dynamics and transmission in immunosuppressed patients. Virulence. 2022;13:1242–51. https://doi.org/10.1080/21505594.2022.2101198 .
doi: 10.1080/21505594.2022.2101198 pubmed: 35891618 pmcid: 9336477
Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021;593:130–5. https://doi.org/10.1038/s41586-021-03398-2 .
doi: 10.1038/s41586-021-03398-2 pubmed: 33684923
Voloch CM, De Silva Francisco R Jr, De Almeida LGP, Brustolini OJ, Cardoso CC, Gerber AL, et al. Intra-host evolution during SARS-CoV-2 prolonged infection. Virus Evol. 2021;7:veab078. https://doi.org/10.1093/ve/veab078 .
doi: 10.1093/ve/veab078 pubmed: 34642605 pmcid: 8500031
Fuhrmann L, Jablonski KP, Beerenwinkel N. Quantitative measures of within-host viral genetic diversity. Curr Opin Virol. 2021;49:157–63. https://doi.org/10.1016/j.coviro.2021.06.002 .
doi: 10.1016/j.coviro.2021.06.002 pubmed: 34153841
Wang Y, Wang D, Zhang L, Sun W, Zhang Z, Chen W, et al. Intra-host variation and evolutionary dynamics of SARS-CoV-2 populations in COVID-19 patients. Genome Med. 2021;13:30. https://doi.org/10.1186/s13073-021-00847-5 .
doi: 10.1186/s13073-021-00847-5 pubmed: 33618765 pmcid: 7898256
Al Khatib HA, Benslimane FM, Elbashir IE, Coyle PV, Al Maslamani MA, Al-Khal A, et al. Within-host diversity of SARS-CoV-2 in COVID-19 patients with variable disease severities. Front Cell Infect Microbiol. 2020;10:575613. https://doi.org/10.3389/fcimb.2020.575613 .
doi: 10.3389/fcimb.2020.575613 pubmed: 33123498 pmcid: 7572854
Harari S, Miller D, Fleishon S, Burstein D, Stern A. Using big sequencing data to identify chronic SARS-Coronavirus-2 infections. Nat Commun. 2024;15(1):648. https://doi.org/10.1038/s41467-024-44803-4 .
doi: 10.1038/s41467-024-44803-4 pubmed: 38245511 pmcid: 10799923
Avanzato VA, Matson MJ, Seifert SN, Pryce R, Williamson BN, Anzick SL, et al. Case study: prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised individual with cancer. Cell. 2020;183:1901-1912.e9. https://doi.org/10.1016/j.cell.2020.10.049 .
doi: 10.1016/j.cell.2020.10.049 pubmed: 33248470 pmcid: 7640888
Pérez-Lago L, Aldámiz-Echevarría T, García-Martínez R, Pérez-Latorre L, Herranz M, Sola-Campoy P, et al. Different within-host viral evolution dynamics in severely immunosuppressed cases with persistent SARS-CoV-2. Biomedicines. 2021;9:808. https://doi.org/10.3390/biomedicines9070808 .
doi: 10.3390/biomedicines9070808 pubmed: 34356872 pmcid: 8301427
Knyazev S, Hughes L, Skums P, Zelikovsky A. Epidemiological data analysis of viral quasispecies in the next-generation sequencing era. Brief Bioinform. 2021;22:96–108. https://doi.org/10.1093/bib/bbaa101 .
doi: 10.1093/bib/bbaa101 pubmed: 32568371
Codon frequency table—Stanford Coronavirus Antiviral & Resistance Database (CoVDB). Last updated on Aug 30, 2021. https://covdb.stanford.edu/page/codfreq/ . Accessed 9 June 2023.
SARS-CoV-2 NGS Pipeline—Stanford Coronavirus Antiviral & Resistance Database (CoVDB). Last updated on May 14, 2024. https://covdb.stanford.edu/sierra/sars2/ngs2codfreq/ . Accessed 9 June 2023.
SARS-CoV-2 Sequence Reads (NGS) Analysis—Stanford Coronavirus Antiviral & Resistance Database (CoVDB). Last updated on May 14, 2024. https://covdb.stanford.edu/sierra/sars2/by-reads/ . Accessed 9 June 2023.
Shen Z, Xiao Y, Kang L, Ma W, Shi L, Zhang L, et al. Genomic diversity of severe acute respiratory syndrome-coronavirus 2 in patients with coronavirus disease 2019. Clin Infect Dis Off Publ Infect Dis Soc Am. 2020;71:713–20. https://doi.org/10.1093/cid/ciaa203 .
doi: 10.1093/cid/ciaa203
Lythgoe KA, Hall M, Ferretti L, De Cesare M, MacIntyre-Cockett G, Trebes A, et al. SARS-CoV-2 within-host diversity and transmission. Science. 2021;372:eabg0821. https://doi.org/10.1126/science.abg0821 .
doi: 10.1126/science.abg0821 pubmed: 33688063 pmcid: 8128293
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44(W1):W232–5. https://doi.org/10.1093/nar/gkw256 .
doi: 10.1093/nar/gkw256 pubmed: 27084950 pmcid: 4987875
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–6. https://doi.org/10.1093/nar/gkab301 .
doi: 10.1093/nar/gkab301 pubmed: 33885785 pmcid: 8265157
Gangavarapu K, Latif AA, Mullen JL, Alkuzweny M, Hufbauer E, Tsueng G, et al. Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nat Methods. 2023. https://doi.org/10.1038/s41592-023-01769-3 .
doi: 10.1038/s41592-023-01769-3 pubmed: 36823332 pmcid: 10399614
Marques AD, Graham-Wooten J, Fitzgerald AS, Sobel Leonard A, Cook EJ, Everett JK, et al. SARS-CoV-2 evolution during prolonged infection in immunocompromised patients. mBio. 2024;15(3):e0011024. https://doi.org/10.1128/mbio.00110-24 .
doi: 10.1128/mbio.00110-24 pubmed: 38364100
Raglow Z, Surie D, Chappell JD, Zhu Y, Martin ET, Kwon JH, et al. SARS-CoV-2 shedding and evolution in patients who were immunocompromised during the omicron period: a multicentre, prospective analysis. Lancet Microbe. 2024;5(3):e235–46. https://doi.org/10.1016/S2666-5247(23)00336-1 .
doi: 10.1016/S2666-5247(23)00336-1 pubmed: 38286131
Baum A, Fulton BO, Wloga E, Copin R, Pascal KE, Russo V, et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science. 2020;369:1014–8. https://doi.org/10.1126/science.abd0831 .
doi: 10.1126/science.abd0831 pubmed: 32540904
Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife. 2020;9:e61312. https://doi.org/10.7554/eLife.61312 .
doi: 10.7554/eLife.61312 pubmed: 33112236 pmcid: 7723407
Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC, Dingens AS, et al. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science. 2021;371:850–4. https://doi.org/10.1126/science.abf9302 .
doi: 10.1126/science.abf9302 pubmed: 33495308 pmcid: 7963219
Muecksch F, Weisblum Y, Barnes CO, Schmidt F, Schaefer-Babajew D, Wang Z, et al. Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations. Immunity. 2021;54:1853-1868.e7. https://doi.org/10.1016/j.immuni.2021.07.008 .
doi: 10.1016/j.immuni.2021.07.008 pubmed: 34331873 pmcid: 8323339
Wilkinson SAJ, Richter A, Casey A, Osman H, Mirza JD, Stockton J, et al. Recurrent SARS-CoV-2 mutations in immunodeficient patients. Virus Evol. 2022;8(2):e050. https://doi.org/10.1093/ve/veac050 .
doi: 10.1093/ve/veac050
Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature. 2021;592:616–22. https://doi.org/10.1038/s41586-021-03324-6 .
doi: 10.1038/s41586-021-03324-6 pubmed: 33567448 pmcid: 8503938
Kullappan M, Mary U, Ambrose JM, Veeraraghavan VP, Surapaneni KM. Elucidating the role of N440K mutation in SARS-CoV-2 spike—ACE-2 binding affinity and COVID-19 severity by virtual screening, molecular docking and dynamics approach. J Biomol Struct Dyn. 2023;41(3):912–29. https://doi.org/10.1080/07391102.2021.2014973 .
doi: 10.1080/07391102.2021.2014973 pubmed: 34904526
Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell. 2020;182:1284-1294.e9. https://doi.org/10.1016/j.cell.2020.07.012 .
doi: 10.1016/j.cell.2020.07.012 pubmed: 32730807 pmcid: 7366990
McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC, et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell. 2021;184:2332-2347.e16. https://doi.org/10.1016/j.cell.2021.03.028 .
doi: 10.1016/j.cell.2021.03.028 pubmed: 33761326 pmcid: 7962585

Auteurs

Luca Ruotolo (L)

Microbiology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, Bologna, Italy.

Silvia Silenzi (S)

Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.

Beatrice Mola (B)

Microbiology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, Bologna, Italy.

Margherita Ortalli (M)

Microbiology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, Bologna, Italy.
Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.

Tiziana Lazzarotto (T)

Microbiology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, Bologna, Italy. tiziana.lazzarotto@unibo.it.
Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy. tiziana.lazzarotto@unibo.it.

Giada Rossini (G)

Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH