Plant growth and nitrate absorption and assimilation of two sweet potato cultivars with different N tolerances in response to nitrate supply.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
12 Sep 2024
Historique:
received: 07 04 2024
accepted: 06 09 2024
medline: 13 9 2024
pubmed: 13 9 2024
entrez: 12 9 2024
Statut: epublish

Résumé

In sweet potato, rational nitrogen (N) assimilation and distribution are conducive to inhibiting vine overgrowth. Nitrate (NO

Identifiants

pubmed: 39266741
doi: 10.1038/s41598-024-72422-y
pii: 10.1038/s41598-024-72422-y
doi:

Substances chimiques

Nitrates 0
Nitrogen N762921K75
Nitrate Reductase EC 1.7.99.4
Nitrate Transporters 0
Plant Proteins 0
Nitrite Reductases EC 1.7.-
Anion Transport Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

21286

Subventions

Organisme : Natural Science Foundation of Shandong Province
ID : ZR2021MC092
Organisme : Key Research and Development Program of Shandong Province, China
ID : 2023TZXD001
Organisme : Tubers and Root Crops Innovation Team of Modern Agricultural Technology System in Shandong Province, China
ID : SDAIT-16-09
Organisme : China Agriculture Research System of MOF and MARA
ID : CARS-10-GW09

Informations de copyright

© 2024. The Author(s).

Références

Food and Agriculture Organization of the United Nations. Statistics database of food and agriculture organization of the United Nations-Food and agriculture data-Production-Crops. http://www.fao.org/statistics/en/.FAOSTAT . (accessed 14 January 2020).
Villordon, A. Q. & Clark, C. A. Variation in virus symptom development and root architecture attributes at the onset of storage root initiation in ‘Beauregard’ sweetpotato plants grown with or without nitrogen. PLoS ONE 9, e107384 (2014).
pubmed: 25243579 pmcid: 4170963 doi: 10.1371/journal.pone.0107384
Taranet, P., Harper, S., Kirchhof, G., Fujinuma, R. & Menzies, N. Growth and yield response of glasshouse- and field-grown sweetpotato to nitrogen supply. Nutr. Cycl. Agroecos. 108, 309–321 (2017).
doi: 10.1007/s10705-017-9858-6
Duan, W. X. et al. Nitrogen utilization characteristics and early storage root development in nitrogen-tolerant and nitrogen-susceptible sweet potato. Physiol. Plantarum. 173, 1090–1104 (2021).
doi: 10.1111/ppl.13504
Phillips, S. B., Warren, J. G. & Mullins, G. L. Nitrogen rate and application timing affect “Beauregard” sweetpotato yield and quality. Hortscience. 40, 214–217 (2005).
doi: 10.21273/HORTSCI.40.1.214
Fernandes, A. M., Assunção, N. S., Ribeiro, N. P., Gazola, B. & Silva, R. M. Nutrient uptake and removal by sweet potato fertilized with green manure and nitrogen on sandy soil. Rev. Bras. Cienc. Solo. 44, e0190127 (2020).
doi: 10.36783/18069657rbcs20190127
Villagarcia, M. R., Collins, W. W. & Raper, C. D. Nitrate uptake and nitrogen use efficiency of two sweetpotato genotypes during early stages of storage root formation. J. Am. Soc. Hortic. Sci. 123, 814–820 (1998).
doi: 10.21273/JASHS.123.5.814
Duan, W. X. et al. Comparative study on carbon-nitrogen metabolism and endogenous hormone contents in normal and overgrown sweetpotato. S. Afr. J. Bot. 115, 199–207 (2018).
doi: 10.1016/j.sajb.2017.11.016
Kelm, M., Brück, H., Hermann, M. & Sattelmacher, B. The effect of low nitrogen supply on yield and water-use efficiency of sweet potato (Ipomoea batatas L.). In: Horst, WJ. et al. (Eds.), Plant Nutrition. Developments in Plant and Soil Sciences, Springer, Dordrecht, pp: 402–403 (2001).
Ankumah, R. O., Khan, V., Mwamba, K. & Kpomblekou-A, K. The influence of source and timing of nitrogen fertilizers on yield and nitrogen use efficiency of four sweet potato cultivars. Agr. Ecosyst. Environ. 100, 201–207 (2003).
doi: 10.1016/S0167-8809(03)00196-8
Duan, W. X. et al. Differences between nitrogen-tolerant and nitrogen-susceptible sweetpotato cultivars in photosynthate distribution and transport under different nitrogen conditions. PLoS ONE 13, e0194570 (2018).
pubmed: 29596436 pmcid: 5875776 doi: 10.1371/journal.pone.0194570
Sun, H. W., Feng, F., Liu, J. & Zhao, Q. Z. Nitric oxide affects rice root growth by regulating auxin transport under nitrate supply. Front. Plant Sci. 9, 659 (2018).
pubmed: 29875779 pmcid: 5974057 doi: 10.3389/fpls.2018.00659
Wang, P. et al. Increased biomass accumulation in maize grown in mixed nitrogen supply is mediated by auxin synthesis. J. Exp. Bot. 70, 1859–1873 (2019).
pubmed: 30759246 pmcid: 6436159 doi: 10.1093/jxb/erz047
Ma, H. P. et al. Heterologous expression of nitrate assimilation related-protein DsNAR2.1/NRT3.1 affects uptake of nitrate and ammonium in nitrogen-starved Arabidopsis. Int. J. Mol. Sci. 21, 4027 (2020).
pubmed: 32512879 pmcid: 7312895 doi: 10.3390/ijms21114027
Orsel, M., Filleur, S., Fraisier, V. & Daniel-Vedele, F. Nitrate transport in plants: Which gene and which control?. J. Exp. Bot. 53, 825–833 (2002).
pubmed: 11912225 doi: 10.1093/jexbot/53.370.825
Davenport, S., Lay, P. L. & Sanchez-Tamburrrino, J. P. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase. Plant Physiol. Bioch. 97, 96–107 (2015).
doi: 10.1016/j.plaphy.2015.09.013
Takushi, H. & Hitoshi, S. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. J. Exp. Bot. 10, 2501–2512 (2017).
Adavi, S. B. & Sathee, L. Elevated CO
pubmed: 33047233 doi: 10.1007/s00709-020-01564-3
Yao, Z. F., Wang, Z. Y., Fang, B. P., Chen, J. Y. & Yang, Y. L. Involvement of nitrogen in storage root growth and related gene expression in sweet potato (Ipomoea batatas). Plant Biol. 22, 376–385 (2020).
pubmed: 31943638 doi: 10.1111/plb.13088
Mcinenly, L. E., Merrill, E. H., Cahill, J. F. & Juma, N. G. Festuca campestris alters root morphology and growth in response to simulated grazing and nitrogen form. Funct. Ecol. 24, 283–292 (2010).
doi: 10.1111/j.1365-2435.2009.01642.x
Rasmussen, I. S., Dresbll, D. B. & Thorup-Kristensen, K. Winter wheat cultivars and nitrogen (N) fertilization effects on root growth, N uptake efficiency and N use efficiency. Eur. J. Agron. 68, 38–49 (2015).
doi: 10.1016/j.eja.2015.04.003
Meng, L. et al. Differential responses of root growth to nutrition with different ammonium/nitrate ratios involve auxin distribution in two tobacco cultivars. J. Integr. Agr. 18, 2703–2715 (2020).
doi: 10.1016/S2095-3119(19)62595-5
Du, X. B., Xi, M. & Kong, L. C. Split application of reduced nitrogen rate improves nitrogen uptake and use efficiency in sweetpotato. Sci. Rep. 9, 14058 (2019).
pubmed: 31575958 pmcid: 6773731 doi: 10.1038/s41598-019-50532-2
Darnell, R. L., Stutte, G. W. & Sager, J. C. Nitrite concentration effects on NO
pubmed: 12033227 doi: 10.21273/JASHS.126.5.560
Wang, X. L., Tao, Y. Y., Sheng, H. J. & Feng, K. Effects of nitrate supply on morphology development and nitrate uptake kinetics of wheat roots. J. Tritic. Crops. 30, 129–134 (2010).
Chen, X. G. et al. Responses of root physiological characteristics and yield of sweet potato to humic acid urea fertilizer. Plos ONE 12, e0189715 (2017).
pubmed: 29253886 pmcid: 5734739 doi: 10.1371/journal.pone.0189715
Ren, Z. T. et al. Overexpression of IbSnRK1 enhances nitrogen uptake and carbon assimilation in transgenic sweetpotato. J. Integr. Agr. 17, 296–305 (2018).
doi: 10.1016/S2095-3119(16)61611-8
Yu, Y. C. et al. NaCl-induced changes of ion homeostasis and nitrogen metabolism in two sweet potato (Ipomoea batatas L.) cultivars exhibit different salt tolerance at adventitious root stage. Environ. Exp. Bot. 129, 23–36 (2016).
doi: 10.1016/j.envexpbot.2015.12.006
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).
pubmed: 18546601 doi: 10.1038/nprot.2008.73
Liang, Y. L., Zheng, P., Li, S., Li, K. Z. & Xu, H. N. Nitrate reductase-dependent NO production is involved in H
doi: 10.1016/j.scienta.2017.10.044
Wang, J. Y., Wang, H. Q., Liang, X. D. & Liu, J. H. Response of root morphology and N absorption to nitrate nitrogen supply in hydroponic oats. J. Plant Nutr. Ferti. 22, 1049–1055 (2016).
Lv, X. M. et al. Low-nitrogen stress stimulates lateral root initiation and nitrogen assimilation in wheat: roles of phytohormone signaling. J. Plant Growth Regul. 40, 436–450 (2021).
doi: 10.1007/s00344-020-10112-5
Yan, H. F. et al. Root morphological and proteomic responses to growth restriction in maize plants supplied with sufficient N. J. Plant Physiol. 168, 1067–1075 (2011).
pubmed: 21353328 doi: 10.1016/j.jplph.2010.12.018
Huang, S. J. et al. A transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation. Plant Physiol. 180, 882–895 (2019).
pubmed: 30886113 pmcid: 6548263 doi: 10.1104/pp.19.00142
Xing, Y. et al. Role of calcium as a possible regulator of growth and nitrate nitrogen metabolism in apple dwarf root stock seedlings. Sci. Hortic. 276, 109740 (2021).
doi: 10.1016/j.scienta.2020.109740
Gao, R. H. et al. Enhancement of root architecture and nitrate transporter gene expression improves plant growth and nitrogen uptake under long-term low-nitrogen stress in barley (Hordeum vulgare L.) seedlings. Plant Growth Regul. 95, 343–353 (2021).
doi: 10.1007/s10725-021-00744-2
Su, H. et al. Abscisic acid signaling negatively regulates nitrate uptake via phosphorylation of NRT1.1 by SnRK2s in Arabidopsis. J. Integr. Plant Biol. 63, 597–610 (2021).
pubmed: 33331676 doi: 10.1111/jipb.13057
Lan, G. L., Jiao, C. J., Wang, G. Q., Sun, Y. H. & Sun, Y. Effects of dopamine on growth, carbon metabolism, and nitrogen metabolism in cucumber under nitrate stress. Sci. Hortic. 260, 108790 (2020).
doi: 10.1016/j.scienta.2019.108790
Singh, M., Singh, V. P. & Prasad, S. M. Nitrogen modifies NaCl toxicity in eggplant seedlings: assessment of chlorophyll a fluorescence, antioxidative response and proline metabolism. Biocat. Agr. Biotech. 7, 76–86 (2016).
doi: 10.1016/j.bcab.2016.05.007
Zhang, Z. M., Wan, S. B., Dai, L. X., Ning, T. Y. & Song, W. W. Effects of nitrogen application rates on nitrogen metabolism and related enzyme activities of two different peanut cultivars. Sci. Agr. Sin. 44, 280–290 (2011).
Liao, L. et al. Effect of nitrogen supply on nitrogen metabolism in the citrus cultivar ‘Huangguogan’. PLoS ONE 14, e0213874 (2019).
pubmed: 30897177 pmcid: 6428318 doi: 10.1371/journal.pone.0213874
Ren, B. Z., Dong, S. T., Zhao, B., Liu, P. & Zhang, J. W. Responses of nitrogen metabolism, uptake and translocation of maize to waterlogging at different growth stages. Front. Plant Sci. 8, 1216 (2017).
pubmed: 28744299 pmcid: 5504228 doi: 10.3389/fpls.2017.01216
Xia, H. Q. et al. Drought-induced responses of nitrogen metabolism in Ipomoea batatas. Plants 9, 1341 (2020).
pubmed: 33050634 pmcid: 7600920 doi: 10.3390/plants9101341
Carilloa, P., Mastrolonardoa, G., Naccaa, F. & Fuggia, A. Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Funct. Plant Biol. 32, 209–219 (2005).
doi: 10.1071/FP04184
Andrews, M. The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ. 9, 511–519 (2010).
doi: 10.1111/1365-3040.ep11616228
Lawlor, D. W. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J. Exp. Bot. 53, 773–787 (2002).
pubmed: 11912221 doi: 10.1093/jexbot/53.370.773
Luo, J. et al. Net fluxes of ammonium and nitrate in association with H
pubmed: 23179443 doi: 10.1007/s00425-012-1807-7

Auteurs

Wenxue Duan (W)

Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China.
Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China.
State Key Laboratory of Nutrient Use and Management, Jinan, 250100, China.
Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China.

Shasha Wang (S)

Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China.

Haiyan Zhang (H)

Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China. zhanghy2020saas@163.com.
Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China. zhanghy2020saas@163.com.
State Key Laboratory of Nutrient Use and Management, Jinan, 250100, China. zhanghy2020saas@163.com.
Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China. zhanghy2020saas@163.com.

Beitao Xie (B)

Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China.
Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China.
Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China.

Liming Zhang (L)

Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China. zhanglm2016saas@163.com.
Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China. zhanglm2016saas@163.com.
Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, China. zhanglm2016saas@163.com.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

Classifications MeSH