Meta-analysis of bone mineral density in adults with phenylketonuria.
Bone
Bone mineral density
Diet
Diet adherence
Meta-analysis
Osteopenia
Osteoporosis
Phenylalanine
Phenylketonuria
Z-score
Journal
Orphanet journal of rare diseases
ISSN: 1750-1172
Titre abrégé: Orphanet J Rare Dis
Pays: England
ID NLM: 101266602
Informations de publication
Date de publication:
12 Sep 2024
12 Sep 2024
Historique:
received:
13
10
2023
accepted:
19
05
2024
medline:
13
9
2024
pubmed:
13
9
2024
entrez:
12
9
2024
Statut:
epublish
Résumé
Lifelong management of phenylketonuria (PKU) centers on medical nutrition therapy, including dietary phenylalanine (Phe) restriction in addition to Phe-free or low-Phe medical foods/protein substitutes. Studies have reported low bone mineral density (BMD) in mixed-age PKU populations, possibly related to long-term Phe restriction. Therefore, a meta-analysis investigating BMD specifically in adults with PKU was conducted. Studies reporting BMD-related outcomes were identified from a systematic literature review evaluating somatic comorbidities experienced by adults with PKU on a Phe-restricted diet (searched February 1, 2022, updated November 1, 2023). Risk of study bias was assessed (Scottish Intercollegiate Guidelines Network checklists). The primary outcome of the meta-analysis was pooled mean BMD Z-scores of different bones. Secondary outcomes were the prevalence of low BMD Z-scores at pre-specified thresholds. Subgroup analyses of mean BMD Z-scores (decade of study publication, controlled versus uncontrolled blood Phe levels, gender) were conducted. BMD-related data from 4097 individuals across 10 studies rated as at least acceptable quality were included. Mean BMD Z-scores were statistically significantly lower compared with an age-matched control or reference (non-PKU) population, across bones, but still within the expected range for age (> -2.0): lumbar spine (seven studies, n = 304), -0.63 (95% confidence interval (CI): -0.74, -0.52); femoral neck (four studies, n = 170), -0.74 (95% CI: -1.25, -0.22); radius (three studies, n = 114), -0.77 (95% CI: -1.21, -0.32); total body (four studies, n = 157), -0.61 (95% CI: -0.77, -0.45). The small number of observations in the subgroup analyses resulted in a high degree of uncertainty, limiting interpretation. Estimated prevalence of BMD Z-scores ≤ -2.0 was 8% (95% CI: 5%, 13%; four studies, n = 221) and < -1.0 was 42% (95% CI: 35%, 51%; five studies, n = 144). Adults with PKU had lower BMD Z-scores than the reference (non-PKU) population but < 1 in 10 were below the expected range for age. The low number of studies prevents identification of which population characteristics are most impacting BMD. This meta-analysis was supported by BioMarin Pharmaceutical Inc., Novato, CA and is registered with the Research Registry (reviewregistry1476).
Sections du résumé
BACKGROUND
BACKGROUND
Lifelong management of phenylketonuria (PKU) centers on medical nutrition therapy, including dietary phenylalanine (Phe) restriction in addition to Phe-free or low-Phe medical foods/protein substitutes. Studies have reported low bone mineral density (BMD) in mixed-age PKU populations, possibly related to long-term Phe restriction. Therefore, a meta-analysis investigating BMD specifically in adults with PKU was conducted.
METHODS
METHODS
Studies reporting BMD-related outcomes were identified from a systematic literature review evaluating somatic comorbidities experienced by adults with PKU on a Phe-restricted diet (searched February 1, 2022, updated November 1, 2023). Risk of study bias was assessed (Scottish Intercollegiate Guidelines Network checklists). The primary outcome of the meta-analysis was pooled mean BMD Z-scores of different bones. Secondary outcomes were the prevalence of low BMD Z-scores at pre-specified thresholds. Subgroup analyses of mean BMD Z-scores (decade of study publication, controlled versus uncontrolled blood Phe levels, gender) were conducted.
RESULTS
RESULTS
BMD-related data from 4097 individuals across 10 studies rated as at least acceptable quality were included. Mean BMD Z-scores were statistically significantly lower compared with an age-matched control or reference (non-PKU) population, across bones, but still within the expected range for age (> -2.0): lumbar spine (seven studies, n = 304), -0.63 (95% confidence interval (CI): -0.74, -0.52); femoral neck (four studies, n = 170), -0.74 (95% CI: -1.25, -0.22); radius (three studies, n = 114), -0.77 (95% CI: -1.21, -0.32); total body (four studies, n = 157), -0.61 (95% CI: -0.77, -0.45). The small number of observations in the subgroup analyses resulted in a high degree of uncertainty, limiting interpretation. Estimated prevalence of BMD Z-scores ≤ -2.0 was 8% (95% CI: 5%, 13%; four studies, n = 221) and < -1.0 was 42% (95% CI: 35%, 51%; five studies, n = 144).
CONCLUSIONS
CONCLUSIONS
Adults with PKU had lower BMD Z-scores than the reference (non-PKU) population but < 1 in 10 were below the expected range for age. The low number of studies prevents identification of which population characteristics are most impacting BMD. This meta-analysis was supported by BioMarin Pharmaceutical Inc., Novato, CA and is registered with the Research Registry (reviewregistry1476).
Identifiants
pubmed: 39267130
doi: 10.1186/s13023-024-03223-9
pii: 10.1186/s13023-024-03223-9
doi:
Substances chimiques
Phenylalanine
47E5O17Y3R
Types de publication
Journal Article
Meta-Analysis
Systematic Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
338Informations de copyright
© 2024. The Author(s).
Références
Williams RA, Mamotte CD, Burnett JR. Phenylketonuria: an inborn error of phenylalanine metabolism. Clin Biochem Rev. 2008;29(1):31–41.
pubmed: 18566668
pmcid: 2423317
Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet. 2010;376(9750):1417–27.
pubmed: 20971365
doi: 10.1016/S0140-6736(10)60961-0
Vockley J, Andersson HC, Antshel KM, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med. 2014;16(2):188–200.
pubmed: 24385074
doi: 10.1038/gim.2013.157
van Wegberg AMJ, MacDonald A, Ahring K, et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis. 2017;12(1):162.
pubmed: 29025426
pmcid: 5639803
doi: 10.1186/s13023-017-0685-2
Ashe K, Kelso W, Farrand S, et al. Psychiatric and cognitive aspects of phenylketonuria: the limitations of diet and promise of new treatments. Front Psychiatry. 2019;10:561.
pubmed: 31551819
pmcid: 6748028
doi: 10.3389/fpsyt.2019.00561
Blau N, Hennermann JB, Langenbeck U, Lichter-Konecki U. Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies. Mol Genet Metab. 2011;104(Suppl):S2–9.
pubmed: 21937252
doi: 10.1016/j.ymgme.2011.08.017
Trefz KF, Muntau AC, Kohlscheen KM, et al. Clinical burden of illness in patients with phenylketonuria (PKU) and associated comorbidities - a retrospective study of German health insurance claims data. Orphanet J Rare Dis. 2019;14(1):181.
pubmed: 31331350
pmcid: 6647060
doi: 10.1186/s13023-019-1153-y
Burton BK, Jones KB, Cederbaum S, et al. Prevalence of comorbid conditions among adult patients diagnosed with phenylketonuria. Mol Genet Metab. 2018;125(3):228–34.
pubmed: 30266197
doi: 10.1016/j.ymgme.2018.09.006
Demirdas S, Coakley KE, Bisschop PH, Hollak CE, Bosch AM, Singh RH. Bone health in phenylketonuria: a systematic review and meta-analysis. Orphanet J Rare Dis. 2015;10:17.
pubmed: 25758373
pmcid: 4340652
doi: 10.1186/s13023-015-0232-y
Lubout CMA, Arrieta Blanco F, Bartosiewicz K, et al. Bone mineral density is within normal range in most adult phenylketonuria patients. J Inherit Metab Dis. 2020;43(2):251–8.
pubmed: 31587319
pmcid: 7078943
doi: 10.1002/jimd.12177
Ney DM, Etzel MR. Designing medical foods for inherited metabolic disorders: why intact protein is superior to amino acids. Curr Opin Biotechnol. 2017;44:39–45.
pubmed: 27835797
doi: 10.1016/j.copbio.2016.10.009
Stroup BM, Sawin EA, Murali SG, Binkley N, Hansen KE, Ney DM. Amino acid medical foods provide a high dietary acid load and increase urinary excretion of renal net acid, calcium, and magnesium compared with glycomacropeptide medical foods in phenylketonuria. J Nutr Metab. 2017;2017:1909101.
pubmed: 28546877
pmcid: 5436062
doi: 10.1155/2017/1909101
Office of the Surgeon General (US). Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville (MD): Office of the Surgeon General (US); 2004. http://www.ncbi.nlm.nih.gov/books/NBK45513/ . Accessed 10 Aug 2022.
Mirás A, Bóveda MD, Leis MR, et al. Risk factors for developing mineral bone disease in phenylketonuric patients. Mol Genet Metab. 2013;108(3):149–54.
pubmed: 23352389
doi: 10.1016/j.ymgme.2012.12.008
International Society for Clinical Densitometry (ISCD). 2019 ISCD Official Positions - Adult. 2019. https://iscd.org/learn/official-positions/adult-positions/ . Accessed 28 Mar 2023.
Lage S, Bueno M, Andrade F, et al. Fatty acid profile in patients with phenylketonuria and its relationship with bone mineral density. J Inherit Metab Dis. 2010;33(Suppl 3):S363–71.
pubmed: 20830525
doi: 10.1007/s10545-010-9189-0
Sheu A, Diamond T. Bone mineral density: testing for osteoporosis. Aust Prescr. 2016;39(2):35–9.
pubmed: 27340320
pmcid: 4917635
doi: 10.18773/austprescr.2016.020
Kanis JA, Kanis J. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int. 1994;4:368–81.
pubmed: 7696835
doi: 10.1007/BF01622200
Pérez-Dueñas B, Cambra FJ, Vilaseca MA, Lambruschini N, Campistol J, Camacho JA. New approach to osteopenia in phenylketonuric patients. Acta Paediatr. 2002;91(8):899–904.
pubmed: 12222712
doi: 10.1111/j.1651-2227.2002.tb02852.x
International Society for Clinical Densitometry (ISCD). 2019 ISCD Official Positions - Pediatric. 2019. https://iscd.org/learn/official-positions/pediatric-positions/ . Accessed 28 Mar 2023.
de Castro MJ, de Lamas C, Sánchez-Pintos P, González-Lamuño D, Couce ML. Bone status in patients with phenylketonuria: a systematic review. Nutrients. 2020;12(7):2154.
pubmed: 32698408
pmcid: 7400926
doi: 10.3390/nu12072154
Whitehall KB, Rose S, Clague GE, et al. Systematic literature review of the somatic comorbidities experienced by adults with phenylketonuria. Orphanet J Rare Dis. 2024;19:293. https://doi.org/10.1186/s13023-024-03203-z .
doi: 10.1186/s13023-024-03203-z
pubmed: 39135125
pmcid: 11318169
Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.
pubmed: 10789670
doi: 10.1001/jama.283.15.2008
Centre for Reviews and Dissemination. Systematic Reviews: CRD's guidance for undertaking reviews in healthcare; 2009. https://www.york.ac.uk/media/crd/Systematic_Reviews.pdf . Accessed 25 May 2023.
National Institutes of Health. MEDLINE: Overview; 2022. https://www.nlm.nih.gov/medline/medline_overview.html . Accessed 21 Jul 2023.
Scottish Intercollegiate Guidelines Network. SIGN Checklists. 2022. https://www.sign.ac.uk/what-we-do/methodology/checklists/ . Accessed 3 Aug 2022.
Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.
pubmed: 18436948
pmcid: 2335261
doi: 10.1136/bmj.39489.470347.AD
Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135.
pubmed: 25524443
pmcid: 4383202
doi: 10.1186/1471-2288-14-135
Kanters S. Fixed- and random-effects models. Methods Mol Biol. 2022;2345:41–65.
pubmed: 34550583
doi: 10.1007/978-1-0716-1566-9_3
Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022); 2022. www.training.cochrane.org/handbook . Accessed 12 Jul 2022.
Alswat KA. Gender disparities in osteoporosis. J Clin Med Res. 2017;9(5):382–7.
pubmed: 28392857
pmcid: 5380170
doi: 10.14740/jocmr2970w
Borenstein M, Hedges L, Higgins J, Rothstein H. Chapter 13: Fixed-Effect Versus Random-Effect Models. In: Introduction to meta-analysis. John Wiley & Sons; 2009. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470743386 . Accessed 30 June 2022.
Charrière S, Maillot F, Bouée S, et al. Health status and comorbidities of adult patients with phenylketonuria (PKU) in France with a focus on early-diagnosed patients - A nationwide study of health insurance claims data. Mol Genet Metab. 2023;139(3):107625.
pubmed: 37329624
doi: 10.1016/j.ymgme.2023.107625
Dios-Fuentes E, Gonzalo Marin M, Remón-Ruiz P, et al. Cardiometabolic and nutritional morbidities of a large, adult, PKU cohort from Andalusia. Nutrients. 2022;14(6):1311.
pubmed: 35334968
pmcid: 8952233
doi: 10.3390/nu14061311
Coakley KE, Douglas TD, Goodman M, Ramakrishnan U, Dobrowolski SF, Singh RH. Modeling correlates of low bone mineral density in patients with phenylalanine hydroxylase deficiency. J Inherit Metab Dis. 2016;39(3):363–72.
pubmed: 26883219
doi: 10.1007/s10545-015-9910-0
Demirdas S, van Spronsen FJ, Hollak CEM, et al. Micronutrients, essential fatty acids and bone health in phenylketonuria. Ann Nutr Metab. 2017;70(2):111–21.
pubmed: 28334709
doi: 10.1159/000465529
Adamczyk P, Morawiec-Knysak A, Płudowski P, Banaszak B, Karpe J, Pluskiewicz W. Bone metabolism and the muscle-bone relationship in children, adolescents and young adults with phenylketonuria. J Bone Miner Metab. 2011;29(2):236–44.
pubmed: 20706750
doi: 10.1007/s00774-010-0216-x
Choukair D, Kneppo C, Feneberg R, et al. Analysis of the functional muscle-bone unit of the forearm in patients with phenylketonuria by peripheral quantitative computed tomography. J Inherit Metab Dis. 2017;40(2):219–26.
pubmed: 27878409
doi: 10.1007/s10545-016-0002-6
de Groot MJ, Hoeksma M, van Rijn M, Slart RH, van Spronsen FJ. Relationships between lumbar bone mineral density and biochemical parameters in phenylketonuria patients. Mol Genet Metab. 2012;105(4):566–70.
pubmed: 22300845
doi: 10.1016/j.ymgme.2012.01.006
Modan-Moses D, Vered I, Schwartz G, et al. Peak bone mass in patients with phenylketonuria. J Inherit Metab Dis. 2007;30(2):202–8.
pubmed: 17347917
doi: 10.1007/s10545-007-0462-9
Zeman J, Bayer M, Stepán J. Bone mineral density in patients with phenylketonuria. Acta Paediatr. 1999;88(12):1348–51.
pubmed: 10626520
doi: 10.1111/j.1651-2227.1999.tb01049.x
Harbour R, Miller J. A new system for grading recommendations in evidence based guidelines. BMJ. 2001;323(7308):334–6.
pubmed: 11498496
pmcid: 1120936
doi: 10.1136/bmj.323.7308.334
Rojas-Agurto E, Leal-Witt MJ, Arias C, Cabello JF, Bunout D, Cornejo V. Muscle and bone health in young Chilean adults with phenylketonuria and different degrees of compliance with the phenylalanine restricted diet. Nutrients. 2023;15(13):2939.
pubmed: 37447265
pmcid: 10346392
doi: 10.3390/nu15132939
Porta F, Roato I, Mussa A, et al. Increased spontaneous osteoclastogenesis from peripheral blood mononuclear cells in phenylketonuria. J Inherit Metab Dis. 2008;31(Suppl 2):S339–42.
pubmed: 18923919
doi: 10.1007/s10545-008-0907-9
Nieves JW, Formica C, Ruffing J, et al. Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res. 2005;20(3):529–35.
pubmed: 15746999
doi: 10.1359/JBMR.041005
Stroup BM, Hansen KE, Krueger D, Binkley N, Ney DM. Sex differences in body composition and bone mineral density in phenylketonuria: a cross-sectional study. Mol Genet Metab Rep. 2018;15:30–5.
pubmed: 30023287
pmcid: 6047464
Bonafede M, Espindle D, Bower AG. The direct and indirect costs of long bone fractures in a working age US population. J Med Econ. 2013;16(1):169–78.
pubmed: 23035626
doi: 10.3111/13696998.2012.737391
American Bone Health. Understanding bone density results: your T-score and Z-score explained; 2020. https://americanbonehealth.org/bone-density/understanding-the-bone-density-t-score-and-z-score/ . Accessed 12 Jul 2022.
Hochuli M, Bollhalder S, Thierer C, Refardt J, Gerber P, Baumgartner MR. Effects of inadequate amino acid mixture intake on nutrient supply of adult patients with phenylketonuria. Ann Nutr Metab. 2017;71(3–4):129–35.
pubmed: 28848183
doi: 10.1159/000479746
Ilgaz F, Marsaux C, Pinto A, et al. Protein substitute requirements of patients with phenylketonuria on BH4 treatment: a systematic review and meta-analysis. Nutrients. 2021;13(3):1040.
pubmed: 33807079
pmcid: 8004763
doi: 10.3390/nu13031040
Rovelli V, Ercoli V, Dionigi AR, et al. Low bone mineralization in phenylketonuria may be due to undiagnosed metabolic acidosis. Mol Genet Metab Rep. 2023;36:100998.
pubmed: 37600232
pmcid: 10432846
Rocha JC, Calhau C, MacDonald A. Reply to Jakovac; Severity of COVID-19 infection in patients with phenylketonuria: is vitamin D status protective? Am J Physiol Endocrinol Metab. 2020;318(6):E890–1.
pubmed: 32479158
pmcid: 7276976
doi: 10.1152/ajpendo.00195.2020
Bikle D, Christakos S. New aspects of vitamin D metabolism and action — addressing the skin as source and target. Nat Rev Endocrinol. 2020;16(4):234–52.
pubmed: 32029884
doi: 10.1038/s41574-019-0312-5
Kenneson A, Singh RH. Natural history of children and adults with phenylketonuria in the NBS-PKU Connect registry. Mol Genet Metab. 2021;134(3):243–9.
pubmed: 34654619
doi: 10.1016/j.ymgme.2021.10.001
Jurecki ER, Cederbaum S, Kopesky J, et al. Adherence to clinic recommendations among patients with phenylketonuria in the United States. Mol Genet Metab. 2017;120(3):190–7.
pubmed: 28162992
doi: 10.1016/j.ymgme.2017.01.001
Viau K, Wessel A, Martell L, Sacharow S, Rohr F. Nutrition status of adults with phenylketonuria treated with pegvaliase. Mol Genet Metab. 2021;133(4):345–51.
pubmed: 34116943
doi: 10.1016/j.ymgme.2021.06.002