The Hydrophobic Stabilization of Pseudomonas aeruginosa Bacteriophage F8 and the Influence of Modified Bacteriophage Preparation on Biofilm Degradation.
Journal
Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448
Informations de publication
Date de publication:
22 Sep 2024
22 Sep 2024
Historique:
received:
20
01
2024
accepted:
12
09
2024
medline:
22
9
2024
pubmed:
22
9
2024
entrez:
22
9
2024
Statut:
epublish
Résumé
The bacteriophage F8 belongs to the Myoviridae group of phages and is a pathogen of Pseudomonas aeruginosa. Since Pseudomonas aeruginosa is a multidrug-resistant opportunistic bacterium and can cause serious challenges for health services, studying the potential use of phages against them is a promising approach. Pseudomonas aeruginosa can be found on medical devices because bacteria can attach to surfaces and develop biofilms, which are difficult to eradicate because of their high resistance to environmental conditions and antimicrobial therapeutics. Phage therapy is becoming promising as an alternative for the treatment of antibiotic-resistant infections, but there is still a lack of standardized protocols approved by health organizations for possible use in the clinic. In our research, we focused on the potential use of 1-octanol, which was previously used by our team to develop a method for phage purification from bacterial lysate. 1-octanol is a fatty alcohol that is mostly used in the cosmetics industry, and its advantage is that it is approved by the FDA as a food additive. In this paper, we studied the protective properties of the addition of 1-octanol for storing phage liquid preparations. We demonstrated the stabilization effect of 1-octanol addition on F8 bacteriophage preparation during storage under various conditions. Interestingly, more effective biofilm reduction was observed after treatment with the purified bacteriophage and with 1-octanol addition compared to crude lysate.
Identifiants
pubmed: 39306818
doi: 10.1007/s00284-024-03896-2
pii: 10.1007/s00284-024-03896-2
doi:
Substances chimiques
1-Octanol
NV1779205D
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
370Subventions
Organisme : Narodowym Centrum Nauki
ID : UMO-2019/03/X/NZ6/01710
Informations de copyright
© 2024. The Author(s).
Références
Moellering RC Jr (2010) NDM-1—a cause for worldwide concern. N Engl J Med 363(25):2377–2379. https://doi.org/10.1056/NEJMp1011715
doi: 10.1056/NEJMp1011715
pubmed: 21158655
Jangra V, Sharma N, Chhillar AK (2022) Therapeutic approaches for combating Pseudomonas aeruginosa infections. Microbes Infect 24(4):104950. https://doi.org/10.1016/j.micinf.2022.104950
doi: 10.1016/j.micinf.2022.104950
pubmed: 35139390
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M (2022) Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 7(1):199. https://doi.org/10.1038/s41392-022-01056-1
doi: 10.1038/s41392-022-01056-1
pubmed: 35752612
pmcid: 9233671
Ozer E, Yaniv K, Chetrit E, Boyarski A, Meijler MM, Berkovich R, Kushmaro A, Alfonta L (2021) An inside look at a biofilm: Pseudomonas aeruginosa flagella biotracking. Sci Adv 7(24):1–15. https://doi.org/10.1126/sciadv.abg8581
doi: 10.1126/sciadv.abg8581
European Centre for Disease Prevention and Control (2020) Antimicrobial resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2020
World Health Organization (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
Romero-Calle D, Guimarães Benevides R, Góes-Neto A, Billington C (2019) Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics 8(3):138. https://doi.org/10.3390/antibiotics8030138
doi: 10.3390/antibiotics8030138
pubmed: 31487893
pmcid: 6784059
Jończyk-Matysiak E, Łodej N, Kula D, Owczarek B, Orwat F, Międzybrodzki R, Neuberg J, Bagińska N, Weber-Dąbrowska B, Górski A (2019) Factors determining phage stability/activity: challenges in practical phage application. Expert Rev Anti-infect Ther 17(8):583–606. https://doi.org/10.1080/14787210.2019.1646126
doi: 10.1080/14787210.2019.1646126
pubmed: 31322022
Weber-Dąbrowska B, Jończyk-Matysiak E, Żaczek M, Łobocka M, Łusiak-Szelachowska M, Górski A (2016) Bacteriophage procurement for therapeutic purposes. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01177
doi: 10.3389/fmicb.2016.01177
pubmed: 27833608
pmcid: 5101579
Yen M, Cairns LS, Camilli A (2017) A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat Commun 8(1):14187. https://doi.org/10.1038/ncomms14187
doi: 10.1038/ncomms14187
pubmed: 28146150
pmcid: 5296635
Hodyra-Stefaniak K, Miernikiewicz P, Drapała J, Drab M, Jończyk-Matysiak E, Lecion D, Kaźmierczak Z, Beta W, Majewska J, Harhala M, Bubak B, Kłopot A, Górski A, Dąbrowska K (2015) Mammalian host-versus-phage immune response determines phage fate in vivo. Sci Rep 5(1):14802. https://doi.org/10.1038/srep14802
doi: 10.1038/srep14802
pubmed: 26440922
pmcid: 4594097
Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, Clokie MRJ, Garton NJ, Stapley AGF, Kirpichnikova A (2017) Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Coll Interf Sci 249:100–133. https://doi.org/10.1016/j.cis.2017.05.014
doi: 10.1016/j.cis.2017.05.014
Kingham R, Klasa G, Carver KH (2013) Key regulatory guidelines for the development of biologics in the United States and Europe. In: Gad SC (ed) Pharmaceutical sciences encyclopedia. Wiley, Hoboken, pp 1–36. https://doi.org/10.1002/9780470571224.pse503
doi: 10.1002/9780470571224.pse503
Golec P, Dąbrowski K, Hejnowicz MS, Gozdek A, Łoś JM, Węgrzyn G, Lobocka MB, Łoś M (2011) A reliable method for storage of tailed phages. J Microbiol Methods 84(3):486–489. https://doi.org/10.1016/j.mimet.2011.01.007
doi: 10.1016/j.mimet.2011.01.007
pubmed: 21256885
Merabishvili M, Vervaet C, Pirnay JP, De Vos D, Verbeken G, Mast J, Chanishvili N, Vaneechoutte M (2013) Stability of Staphylococcus aureus phage ISP after freeze-drying (Lyophilization). PLoS ONE 8(7):e68797. https://doi.org/10.1371/journal.pone.0068797
doi: 10.1371/journal.pone.0068797
pubmed: 23844241
pmcid: 3699554
Manohar P, Ramesh N (2019) Improved lyophilization conditions for long-term storage of bacteriophages. Sci Rep 9(1):15242. https://doi.org/10.1038/s41598-019-51742-4
doi: 10.1038/s41598-019-51742-4
pubmed: 31645642
pmcid: 6811570
Letkiewicz S, Międzybrodzki R, Fortuna W, Weber-Dąbrowska B, Górski A (2009) Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis—case report. Folia Microbiol 54(5):457–461. https://doi.org/10.1007/s12223-009-0064-z
doi: 10.1007/s12223-009-0064-z
Duyvejonck H, Merabishvili M, Vaneechoutte M, de Soir S, Wright R, Friman V-P, Verbeken G, De Vos D, Pirnay J-P, Mechelen EV, Vermeulen SJT (2021) Evaluation of the stability of bacteriophages in different solutions suitable for the production of magistral preparations in Belgium. Viruses 13(5):865. https://doi.org/10.3390/v13050865
doi: 10.3390/v13050865
pubmed: 34066841
pmcid: 8151234
Szermer-Olearnik B, Boratyński J (2015) Removal of endotoxins from bacteriophage preparations by extraction with organic solvents. PLoS ONE 10(3):e0122672. https://doi.org/10.1371/journal.pone.0122672
doi: 10.1371/journal.pone.0122672
pubmed: 25811193
pmcid: 4374689
Bushara KO, Goldstein SR, Grimes GJ, Burstein AH, Hallett M (2004) Pilot trial of 1-octanol in essential tremor. Neurology 62(1):122–124. https://doi.org/10.1212/01.WNL.0000101722.95137.19
doi: 10.1212/01.WNL.0000101722.95137.19
pubmed: 14718713
Falbe J, Bahrmann H, Lipps W, Mayer D, Frey GD (2013) Alcohols, Aliphatic. Ullmann’s encyclopedia of industrial chemistry. Wiley, Hoboken
Teasdale A, Elder D, Nims RW (2017) ICH quality guidelines: an implementation guide. Wiley, Hoboken
doi: 10.1002/9781118971147
Ackermann HW, Tremblay D, Moineau S (2004) Long-term bacteriophage preservation
Xiao Y, Huang P, Huang Z, Yu K, Song Y, Guo N, Dai H, Jiang M, Xu Y, Wang D, Wei Q (2022) Influencing factors on the preservation of lytic bacteriophage VP3. Biosaf Health 4(5):314–320. https://doi.org/10.1016/j.bsheal.2022.06.004
doi: 10.1016/j.bsheal.2022.06.004
Klibanov AM (1990) Asymmetric transformations catalyzed by enzymes in organic solvents. Acc Chem Res 23(4):114–120. https://doi.org/10.1021/ar00172a004
doi: 10.1021/ar00172a004
Matsuura J, Powers ME, Manning MC, Shefter E (1993) Structure and stability in insulin dissolved in 1-octanol. J Am Chem Soc 115:1261–1264
doi: 10.1021/ja00057a006
Chan Y, Wu XH, Chieng BW, Ibrahim NA, Then YY (2021) Superhydrophobic nanocoatings as intervention against biofilm-associated bacterial infections. Nanomaterials 11(4):1046. https://doi.org/10.3390/nano11041046
doi: 10.3390/nano11041046
pubmed: 33921904
pmcid: 8073257
Shinde P, Stamatos N, Doub JB (2022) Human plasma significantly reduces bacteriophage infectivity against Staphylococcus aureus clinical isolates. Cureus. https://doi.org/10.7759/cureus.23777
doi: 10.7759/cureus.23777
pubmed: 36632266
pmcid: 9828400
Tang-Siegel GG (2023) Human serum mediated bacteriophage life cycle switch in Aggregatibacter actinomycetemcomitans is linked to pyruvate dehydrogenase complex. Life 13(2):436. https://doi.org/10.3390/life13020436
doi: 10.3390/life13020436
pubmed: 36836793
pmcid: 9959103
Liu S, Lu H, Zhang S, Shi Y, Chen Q (2022) Phages against pathogenic bacterial biofilms and biofilm-based infections: a review. Pharmaceutics 14(2):427. https://doi.org/10.3390/pharmaceutics14020427
doi: 10.3390/pharmaceutics14020427
pubmed: 35214158
pmcid: 8875263