Evidence of a bi-directional relationship between heart failure and diabetes: a strategy for the detection of glucose abnormalities and diabetes prevention in patients with heart failure.


Journal

Cardiovascular diabetology
ISSN: 1475-2840
Titre abrégé: Cardiovasc Diabetol
Pays: England
ID NLM: 101147637

Informations de publication

Date de publication:
28 Sep 2024
Historique:
received: 01 07 2024
accepted: 10 09 2024
medline: 29 9 2024
pubmed: 29 9 2024
entrez: 28 9 2024
Statut: epublish

Résumé

Prevalence of heart failure (HF) and diabetes are markedly increasing globally. In a population of HF patients, approximately 40% have diabetes which is associated with a more severe HF, poorer cardiovascular outcomes and higher hospitalization rates for HF than HF patients without diabetes. Similar trends were shown in HF patients with prediabetes. In addition, the association between HF and renal function decline was demonstrated in patients with or without diabetes. However, the exact prevalence of dysglycemia in HF patients requires further investigation aiming to clarify the most accurate test to detect dysglycemia in this population. The relationship between HF and diabetes is complex and probably bidirectional. In one way, patients with diabetes have a more than two-fold risk of developing incident HF with reduced or preserved ejection fraction than those without diabetes. In the other way, patients with HF, when compared with those without HF, show an increased risk for the onset of diabetes due to several mechanisms including insulin resistance (IR), which makes HF emerging as a precursor for diabetes development. This article provides epidemiological evidence of undetected dysglycemia (prediabetes or diabetes) in HF patients and reviews the pathophysiological mechanisms which favor the development of IR and the risks associated with these disorders in HF patients. This review also offers a discussion of various strategies for the prevention of diabetes in HF patients, based first on fasting plasma glucose and HbA

Identifiants

pubmed: 39342254
doi: 10.1186/s12933-024-02436-3
pii: 10.1186/s12933-024-02436-3
doi:

Substances chimiques

Blood Glucose 0
Biomarkers 0
Hypoglycemic Agents 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

354

Informations de copyright

© 2024. The Author(s).

Références

Valensi P, Prévost G, Pinto S, Halimi JM, Donal E. The impact of diabetes on heart failure development: the cardio-renal-metabolic connection. Diabetes Res Clin Pract. 2021;175: 108831.
pubmed: 33895192 doi: 10.1016/j.diabres.2021.108831
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157: 107843.
pubmed: 31518657 doi: 10.1016/j.diabres.2019.107843
GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the global burden of disease study 2021. Lancet. 2023;402(10397):203–34.
doi: 10.1016/S0140-6736(23)01301-6
Theofilis P, Oikonomou E, Tsioufis K, Tousoulis D. Diabetes mellitus and heart failure: epidemiology, pathophysiologic mechanisms, and the role of SGLT2 inhibitors. Life (Basel). 2023;13(2):497.
pubmed: 36836854
Seferović PM, Petrie MC, Filippatos GS, Anker SD, Rosano G, Bauersachs J, et al. Type 2 diabetes mellitus and heart failure: a position statement from the heart failure association of the european society of cardiology. Eur J Heart Fail. 2018;20(5):853–72.
pubmed: 29520964 doi: 10.1002/ejhf.1170
Cavender MA, Steg PG, Smith SC Jr, Eagle K, Ohman EM, Goto S, et al. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death: outcomes at 4 years from the reduction of atherothrombosis for continued health (REACH) registry. Circulation. 2015;132(10):923–31.
pubmed: 26152709 doi: 10.1161/CIRCULATIONAHA.114.014796
MacDonald MR, Petrie MC, Varyani F, Ostergren J, Michelson EL, Young JB, et al. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Candesartan in Heart failure: assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur Heart J. 2008;29(11):1377–85.
pubmed: 18413309 doi: 10.1093/eurheartj/ehn153
Ceriello A, Catrinoiu D, Chandramouli C, Cosentino F, Dombrowsky AC, Itzhak B, et al. Heart failure in type 2 diabetes: current perspectives on screening, diagnosis and management. Cardiovasc Diabetol. 2021;20(1):218.
pubmed: 34740359 pmcid: 8571004 doi: 10.1186/s12933-021-01408-1
Dantan E, Pailler M, Ragot S, Gand E, Trochu JN, Cariou B, et al. Renal function decline and heart failure hospitalisation in patients with type 2 diabetes: dynamic predictions from the prospective SURDIAGENE cohort. Diabetes Res Clin Pract. 2022;194: 110152.
pubmed: 36375567 doi: 10.1016/j.diabres.2022.110152
Cai X, Liu X, Sun L, He Y, Zheng S, Zhang Y, et al. Prediabetes and the risk of heart failure: a meta-analysis. Diabetes Obes Metab. 2021;23(8):1746–53.
pubmed: 33769672 doi: 10.1111/dom.14388
Pandey A, Vaduganathan M, Patel KV, Ayers C, Ballantyne CM, Kosiborod MN, et al. Biomarker-based risk prediction of incident heart failure in pre-diabetes and diabetes. JACC Heart Fail. 2021;9(3):215–23.
pubmed: 33422434 pmcid: 11229674 doi: 10.1016/j.jchf.2020.10.013
Rentsch CT, Garfield V, Mathur R, Eastwood SV, Smeeth L, Chaturvedi N, et al. Sex-specific risks for cardiovascular disease across the glycaemic spectrum: a population-based cohort study using the UK Biobank. Lancet Reg Health Eur. 2023;32: 100693.
pubmed: 37671124 pmcid: 10477037 doi: 10.1016/j.lanepe.2023.100693
Paulweber B, Valensi P, Lindström J, Lalic NM, Greaves CJ, McKee M, et al. A European evidence-based guideline for the prevention of type 2 diabetes. Horm Metab Res. 2010;42(Suppl 1):S3-36.
pubmed: 20391306 doi: 10.1055/s-0029-1240928
Buysschaert M, Medina JL, Buysschaert B, Bergman M. Definitions (and current controversies) of diabetes and prediabetes. Curr Diabetes Rev. 2016;12(1):8–13.
pubmed: 25612821 doi: 10.2174/1573399811666150122150233
American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S17–S38.
Cosson E, Hamo-Tchatchouang E, Banu I, Nguyen MT, Chiheb S, Ba H, et al. A large proportion of prediabetes and diabetes goes undiagnosed when only fasting plasma glucose and/or HbA1c are measured in overweight or obese patients. Diabetes Metab. 2010;36(4):312–8.
pubmed: 20627649 doi: 10.1016/j.diabet.2010.02.004
Guglin M, Lynch K, Krischer J. Heart failure as a risk factor for diabetes mellitus. Cardiology. 2014;129(2):84–92.
pubmed: 25138610 doi: 10.1159/000363282
Son TK, Toan NH, Thang N, Le Trong TH, Tien HA, Thuy NH, et al. Prediabetes and insulin resistance in a population of patients with heart failure and reduced or preserved ejection fraction but without diabetes, overweight or hypertension. Cardiovasc Diabetol. 2022;21(1):75.
pubmed: 35568879 pmcid: 9107647 doi: 10.1186/s12933-022-01509-5
Mai L, Wen W, Qiu M, Liu X, Sun L, Zheng H, et al. Association between prediabetes and adverse outcomes in heart failure. Diabetes Obes Metab. 2021;23(11):2476–83.
pubmed: 34227220 doi: 10.1111/dom.14490
Suskin N, McKelvie RS, Burns RJ, Latini R, Pericak D, Probstfield J, et al. Glucose and insulin abnormalities relate to functional capacity in patients with congestive heart failure. Eur Heart J. 2000;21(16):1368–75.
pubmed: 10952826 doi: 10.1053/euhj.1999.2043
Kristensen SL, Preiss D, Jhund PS, Squire I, Cardoso JS, Merkely B, et al. Risk related to pre-diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction: insights from prospective comparison of ARNI With ACEI to determine impact on global mortality and morbidity in heart failure trial. Circ Heart Fail. 2016;9(1): e002560.
pubmed: 26754626 pmcid: 4718182 doi: 10.1161/CIRCHEARTFAILURE.115.002560
Kristensen SL, Jhund PS, Lee MMY, Køber L, Solomon SD, Granger CB, et al. Prevalence of prediabetes and undiagnosed diabetes in patients with HFpEF and HFrEF and associated clinical outcomes. Cardiovasc Drugs Ther. 2017;31(5–6):545–9.
pubmed: 28948430 pmcid: 5730631 doi: 10.1007/s10557-017-6754-x
Jackson AM, Rørth R, Liu J, Kristensen SL, Anand IS, Claggett BL, et al. Diabetes and pre-diabetes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2022;24(3):497–509.
pubmed: 34918855 doi: 10.1002/ejhf.2403
Egstrup M, Schou M, Gustafsson I, Kistorp CN, Hildebrandt PR, Tuxen CD. Oral glucose tolerance testing in an outpatient heart failure clinic reveals a high proportion of undiagnosed diabetic patients with an adverse prognosis. Eur J Heart Fail. 2011;13(3):319–26.
pubmed: 21148170 doi: 10.1093/eurjhf/hfq216
Lindström J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care. 2003;26(3):725–31.
pubmed: 12610029 doi: 10.2337/diacare.26.3.725
Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323.
pubmed: 31497854 doi: 10.1093/eurheartj/ehz486
McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.
pubmed: 31535829 doi: 10.1056/NEJMoa1911303
Echouffo-Tcheugui JB, Xu H, DeVore AD, Schulte PJ, Butler J, Yancy CW, et al. Temporal trends and factors associated with diabetes mellitus among patients hospitalized with heart failure: Findings from Get With The Guidelines-Heart Failure registry. Am Heart J. 2016;182:9–20.
pubmed: 27914505 doi: 10.1016/j.ahj.2016.07.025
McHugh K, DeVore AD, Wu J, Matsouaka RA, Fonarow GC, Heidenreich PA, et al. Heart failure with preserved ejection fraction and diabetes: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(5):602–11.
pubmed: 30732715 doi: 10.1016/j.jacc.2018.11.033
Lazar S, Rayner B, Lopez Campos G, McGrath K, McClements L. Mechanisms of heart failure with preserved ejection fraction in the presence of diabetes mellitus. Transl Metab Syndr Res. 2020;3:1–5.
Nichols GA, Hillier TA, Erbey JR, Brown JB. Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care. 2001;24(9):1614–9.
pubmed: 11522708 doi: 10.2337/diacare.24.9.1614
Dei Cas A, Khan SS, Butler J, Mentz RJ, Bonow RO, Avogaro A, et al. Impact of diabetes on epidemiology, treatment, and outcomes of patients with heart failure. JACC Heart Fail. 2015;3(2):136–45.
pubmed: 25660838 doi: 10.1016/j.jchf.2014.08.004
Kenny HC, Abel ED. Heart failure in type 2 diabetes mellitus. Circ Res. 2019;124(1):121–41.
pubmed: 30605420 pmcid: 6447311 doi: 10.1161/CIRCRESAHA.118.311371
Pop-Busui R, Januzzi JL, Bruemmer D, Butalia S, Green JB, Horton WB, et al. Heart failure: an underappreciated complication of diabetes. A consensus report of the american diabetes association. Diabetes Care. 2022;45(7):1670–90.
pubmed: 35796765 pmcid: 9726978 doi: 10.2337/dci22-0014
Metra M, Zacà V, Parati G, Agostoni P, Bonadies M, Ciccone M, et al. Cardiovascular and noncardiovascular comorbidities in patients with chronic heart failure. J Cardiovasc Med (Hagerstown). 2011;12(2):76–84.
pubmed: 20962666 doi: 10.2459/JCM.0b013e32834058d1
Leung AA, Eurich DT, Lamb DA, Majumdar SR, Johnson JA, Blackburn DF, et al. Risk of heart failure in patients with recent-onset type 2 diabetes: population-based cohort study. J Card Fail. 2009;15(2):152–7.
pubmed: 19254675 doi: 10.1016/j.cardfail.2008.10.004
Vinereanu D, Nicolaides E, Tweddel AC, Mädler CF, Holst B, Boden LE, et al. Subclinical left ventricular dysfunction in asymptomatic patients with Type II diabetes mellitus, related to serum lipids and glycated haemoglobin. Clin Sci (Lond). 2003;105(5):591–9.
pubmed: 12831396 doi: 10.1042/CS20030168
Echouffo-Tcheugui JB, Ogunmoroti O, Golden SH, Bertoni AG, Mongraw-Chaffin M, Pandey A, et al. Glycemic markers and heart failure subtypes: the multi-ethnic study of atherosclerosis (MESA). J Card Fail. 2022;28(11):1593–603.
pubmed: 35114382 pmcid: 9339035 doi: 10.1016/j.cardfail.2022.01.011
Rosano G, Vitale C, Seferovic PM. Heart failure in patients with diabetes mellitus. Card Fail Rev. 2017;3(1):52–5.
pubmed: 28785476 pmcid: 5494155 doi: 10.15420/cfr.2016:20:2
Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020;396(10254):819–29.
pubmed: 32877652 doi: 10.1016/S0140-6736(20)31824-9
Petrie MC, Verma S, Docherty KF, Inzucchi SE, Anand I, Belohlávek J, et al. Effect of dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes. JAMA. 2020;323(14):1353–68.
pubmed: 32219386 pmcid: 7157181 doi: 10.1001/jama.2020.1906
Lund LH, Donal E, Oger E, Hage C, Persson H, Haugen-Löfman I, et al. Association between cardiovascular vs. non-cardiovascular co-morbidities and outcomes in heart failure with preserved ejection fraction. Eur J Heart Fail. 2014;16(9):992–1001.
pubmed: 25046483 doi: 10.1002/ejhf.137
Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord. 2010;11(1):31–9.
pubmed: 20180026 pmcid: 2914514 doi: 10.1007/s11154-010-9131-7
Adeghate E, Singh J. Structural changes in the myocardium during diabetes-induced cardiomyopathy. Heart Fail Rev. 2014;19(1):15–23.
pubmed: 23467937 doi: 10.1007/s10741-013-9388-5
Seferovic PM, Paulus WJ, Rosano G, Polovina M, Petrie MC, Jhund PS et al. Diabetic Cardiomyopathy: a clinical consensus statement of the Heart Failure Association of the ESC. Eur J Heart Fail, submitted for publication.
Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122(4):624–38.
pubmed: 29449364 pmcid: 5819359 doi: 10.1161/CIRCRESAHA.117.311586
Marfella R, D’Onofrio N, Trotta MC, Sardu C, Scisciola L, Amarelli C, et al. Sodium/glucose cotransporter 2 (SGLT2) inhibitors improve cardiac function by reducing JunD expression in human diabetic hearts. Metabolism. 2022;127: 154936.
pubmed: 34801581 doi: 10.1016/j.metabol.2021.154936
Kostis JB, Sanders M. The association of heart failure with insulin resistance and the development of type 2 diabetes. Am J Hypertens. 2005;18(5 Pt 1):731–7.
pubmed: 15882558 doi: 10.1016/j.amjhyper.2004.11.038
Vermes E, Ducharme A, Bourassa MG, Lessard M, White M, Tardif JC. Enalapril reduces the incidence of diabetes in patients with chronic heart failure: insight from the studies of left ventricular dysfunction (SOLVD). Circulation. 2003;107(9):1291–6.
pubmed: 12628950 doi: 10.1161/01.CIR.0000054611.89228.92
Nochioka K, Sakata Y, Miura M, Shiroto T, Takahashi J, Saga C, et al. Impaired glucose tolerance and albuminuria in patients with chronic heart failure: a subanalysis of the SUPPORT trial. ESC Heart Fail. 2019;6(6):1252–61.
pubmed: 31647614 pmcid: 6989294 doi: 10.1002/ehf2.12516
Inzucchi SE, Docherty KF, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, et al. Dapagliflozin and the incidence of type 2 diabetes in patients with heart failure and reduced ejection fraction: an exploratory analysis from DAPA-HF. Diabetes Care. 2021;44(2):586–94.
pubmed: 33355302 doi: 10.2337/dc20-1675
Rossing P, Inzucchi SE, Vart P, Jongs N, Docherty KF, Jhund PS, et al. Dapagliflozin and new-onset type 2 diabetes in patients with chronic kidney disease or heart failure: pooled analysis of the DAPA-CKD and DAPA-HF trials. Lancet Diabetes Endocrinol. 2022;10(1):24–34.
pubmed: 34856173 doi: 10.1016/S2213-8587(21)00295-3
James S, Erlinge D, Storey RF, McGuire DK, de Belder M, Eriksson N, et al. Dapagliflozin in myocardial infarction without diabetes or heart failure. NEJM Evid. 2024. https://doi.org/10.1056/EVIDoa2300286 .
doi: 10.1056/EVIDoa2300286 pubmed: 38320489
Thrainsdottir IS, Aspelund T, Thorgeirsson G, Gudnason V, Hardarson T, Malmberg K, et al. The association between glucose abnormalities and heart failure in the population-based Reykjavik study. Diabetes Care. 2005;28(3):612–6.
pubmed: 15735197 doi: 10.2337/diacare.28.3.612
Matsushita K, Blecker S, Pazin-Filho A, Bertoni A, Chang PP, Coresh J, et al. The association of hemoglobin a1c with incident heart failure among people without diabetes: the atherosclerosis risk in communities study. Diabetes. 2010;59(8):2020–6.
pubmed: 20484138 pmcid: 2911067 doi: 10.2337/db10-0165
Wamil M, Coleman RL, Adler AI, McMurray JJV, Holman RR. Increased risk of incident heart failure and death is associated with insulin resistance in people with newly diagnosed type 2 diabetes: UKPDS 89. Diabetes Care. 2021;44(8):1877–84.
pubmed: 34162666 doi: 10.2337/dc21-0429
Bartnik M, Rydén L, Malmberg K, Ohrvik J, Pyörälä K, Standl E, et al. Oral glucose tolerance test is needed for appropriate classification of glucose regulation in patients with coronary artery disease: a report from the euro heart survey on diabetes and the heart. Heart. 2007;93(1):72–7.
pubmed: 16905628 doi: 10.1136/hrt.2005.086975
Doerr R, Hoffmann U, Otter W, Heinemann L, Hunger-Battefeld W, Kulzer B, et al. Oral glucose tolerance test and HbA₁c for diagnosis of diabetes in patients undergoing coronary angiography: [corrected] the silent diabetes study. Diabetologia. 2011;54(11):2923–30.
pubmed: 21773683 doi: 10.1007/s00125-011-2253-y
Tatulashvili S, Patois-Vergès B, Nguyen A, Blonde M-C, Vergès B. Detection of glucose metabolism disorders in coronary patients enrolled in cardiac rehabilitation: Is glycated haemoglobin useful? Data from the prospective REHABDIAB study. Eur J Prev Cardiol. 2018;25(5):464–71.
pubmed: 29370710 doi: 10.1177/2047487317754011
Vergès B, Avignon A, Bonnet F, Catargi B, Cattan S, Cosson E, et al. Consensus statement on the care of the hyperglycaemic/diabetic patient during and in the immediate follow-up of acute coronary syndrome. Diabetes Metab. 2012;38(2):113–27.
pubmed: 22209680 doi: 10.1016/j.diabet.2011.11.003
Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.
pubmed: 32865377 doi: 10.1056/NEJMoa2022190
Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–61.
pubmed: 34449189 doi: 10.1056/NEJMoa2107038
O’Hara DV, Jardine MJ. SGLT2 inhibitors may prevent diabetes. Nat Rev Nephrol. 2022;18(4):203–4.
pubmed: 35132217 doi: 10.1038/s41581-022-00541-8
The Diabetes Prevention Program Research Group. The diabetes prevention program: baseline characteristics of the randomized cohort. The diabetes prevention program research Group. Diabetes Care. 2000;23(11):1619–29.
doi: 10.2337/diacare.23.11.1619
Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379(9833):2279–90.
pubmed: 22683128 pmcid: 3891203 doi: 10.1016/S0140-6736(12)60283-9
Bennasar-Veny M, Fresneda S, López-González A, Busquets-Cortés C, Aguiló A, Yañez AM. Lifestyle and progression to type 2 diabetes in a cohort of workers with prediabetes. Nutrients. 2020;12(5):1538.
pubmed: 32466178 pmcid: 7284825 doi: 10.3390/nu12051538
Bansal N. Prediabetes diagnosis and treatment: a review. World J Diabetes. 2015;6(2):296–303.
pubmed: 25789110 pmcid: 4360422 doi: 10.4239/wjd.v6.i2.296
George LK, Koshy SKG, Molnar MZ, Thomas F, Lu JL, Kalantar-Zadeh K, et al. Heart failure increases the risk of adverse renal outcomes in patients with normal kidney function. Circ Heart Fail. 2017;10(8): e003825.
pubmed: 28765150 pmcid: 5557387 doi: 10.1161/CIRCHEARTFAILURE.116.003825
Pinier C, Gatault P, Fauchier L, Angoulvant D, François M, Barbet C, et al. Specific impact of past and new major cardiovascular events on acute kidney injury and end-stage renal disease risks in diabetes: a dynamic view. Clin Kidney J. 2019;13(1):17–23.
pubmed: 32083616 pmcid: 7025370 doi: 10.1093/ckj/sfz028
Anker SD, Butler J, Filippatos G, Khan MS, Marx N, Lam CSP, et al. Effect of empagliflozin on cardiovascular and renal outcomes in patients with heart failure by baseline diabetes status: results from the EMPEROR-reduced trial. Circulation. 2021;143(4):337–49.
pubmed: 33175585 doi: 10.1161/CIRCULATIONAHA.120.051824
Wheeler DC, Stefánsson BV, Jongs N, Chertow GM, Greene T, Hou FF, et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021;9(1):22–31.
pubmed: 33338413 doi: 10.1016/S2213-8587(20)30369-7
Buysschaert M, Bergman M, Valensi P. 1-h post-load plasma glucose for detecting early stages of prediabetes. Diabetes Metab. 2022;48(6): 101395.
pubmed: 36184047 doi: 10.1016/j.diabet.2022.101395
Swan JW, Anker SD, Walton C, Godsland IF, Clark AL, Leyva F, et al. Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol. 1997;30(2):527–32.
pubmed: 9247528 doi: 10.1016/S0735-1097(97)00185-X
Paolisso G, De Riu S, Marrazzo G, Verza M, Varricchio M, D’Onofrio F. Insulin resistance and hyperinsulinemia in patients with chronic congestive heart failure. Metabolism. 1991;40(9):972–7.
pubmed: 1895963 doi: 10.1016/0026-0495(91)90075-8
Coats AJ, Anker SD. Insulin resistance in chronic heart failure. J Cardiovasc Pharmacol. 2000;35(7 Suppl 4):S9-14.
pubmed: 11346220 doi: 10.1097/00005344-200000004-00002
Wong AK, AlZadjali MA, Choy AM, Lang CC. Insulin resistance: a potential new target for therapy in patients with heart failure. Cardiovasc Ther. 2008;26(3):203–13.
pubmed: 18786090 doi: 10.1111/j.1755-5922.2008.00053.x
Scherbakov N, Bauer M, Sandek A, Szabó T, Töpper A, Jankowska EA, et al. Insulin resistance in heart failure: differences between patients with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail. 2015;17(10):1015–21.
pubmed: 26198713 doi: 10.1002/ejhf.317
Ingelsson E, Sundström J, Arnlöv J, Zethelius B, Lind L. Insulin resistance and risk of congestive heart failure. JAMA. 2005;294(3):334–41.
pubmed: 16030278 doi: 10.1001/jama.294.3.334
Arnlöv J, Lind L, Zethelius B, Andrén B, Hales CN, Vessby B, et al. Several factors associated with the insulin resistance syndrome are predictors of left ventricular systolic dysfunction in a male population after 20 years of follow-up. Am Heart J. 2001;142(4):720–4.
pubmed: 11579365 doi: 10.1067/mhj.2001.116957
Vardeny O, Gupta DK, Claggett B, Burke S, Shah A, Loehr L, et al. Insulin resistance and incident heart failure the ARIC study (Atherosclerosis Risk in Communities). JACC Heart Fail. 2013;1(6):531–6.
pubmed: 24455475 pmcid: 3893700 doi: 10.1016/j.jchf.2013.07.006
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. Focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2023;44(37):3627–39.
pubmed: 37622666 doi: 10.1093/eurheartj/ehad195
Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali JR. Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes. 1993;42(7):1017–25.
pubmed: 8513969 doi: 10.2337/diab.42.7.1017
Severino P, D’Amato A, Pucci M, Infusino F, Birtolo LI, Mariani MV, et al. Ischemic heart disease and heart failure: role of coronary ion channels. Int J Mol Sci. 2020;21(9):3167.
pubmed: 32365863 pmcid: 7246492 doi: 10.3390/ijms21093167
Bøtker HE, Møller N, Ovesen P, Mengel A, Schmitz O, Orskov H, et al. Insulin resistance in microvascular angina (syndrome X). Lancet. 1993;342(8864):136–40.
pubmed: 8101255 doi: 10.1016/0140-6736(93)91344-L
Fuh MM, Jeng CY, Young MM, Sheu WH, Chen YD, Reaven GM. Insulin resistance, glucose intolerance, and hyperinsulinemia in patients with microvascular angina. Metabolism. 1993;42(9):1090–2.
pubmed: 8412759 doi: 10.1016/0026-0495(93)90264-O
Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol. 2008;51(2):93–102.
pubmed: 18191731 doi: 10.1016/j.jacc.2007.10.021
Witteles RM, Tang WH, Jamali AH, Chu JW, Reaven GM, Fowler MB. Insulin resistance in idiopathic dilated cardiomyopathy: a possible etiologic link. J Am Coll Cardiol. 2004;44(1):78–81.
pubmed: 15234411 doi: 10.1016/j.jacc.2004.03.037
Felker GM, Shaw LK, O’Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002;39(2):210–8.
pubmed: 11788209 doi: 10.1016/S0735-1097(01)01738-7
Tymińska A, Ozierański K, Balsam P, Maciejewski C, Wancerz A, Brociek E, et al. Ischemic cardiomyopathy versus non-ischemic dilated cardiomyopathy in patients with reduced ejection fraction- clinical characteristics and prognosis depending on heart failure etiology (data from European society of cardiology heart failure registries). Biology (Basel). 2022;11(2):341.
pubmed: 35205207
Scherrer U, Sartori C. Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation. 1997;96(11):4104–13.
pubmed: 9403636 doi: 10.1161/01.CIR.96.11.4104
Doehner W, Rauchhaus M, Ponikowski P, Godsland IF, von Haehling S, Okonko DO, et al. Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol. 2005;46(6):1019–26.
pubmed: 16168285 doi: 10.1016/j.jacc.2005.02.093
AlZadjali MA, Godfrey V, Khan F, Choy A, Doney AS, Wong AK, et al. Insulin resistance is highly prevalent and is associated with reduced exercise tolerance in nondiabetic patients with heart failure. J Am Coll Cardiol. 2009;53(9):747–53.
pubmed: 19245964 doi: 10.1016/j.jacc.2008.08.081
Aroor AR, Mandavia CH, Sowers JR. Insulin resistance and heart failure: molecular mechanisms. Heart Fail Clin. 2012;8(4):609–17.
pubmed: 22999243 pmcid: 3457065 doi: 10.1016/j.hfc.2012.06.005
Shah RV, Abbasi SA, Heydari B, Rickers C, Jacobs DR Jr, Wang L, et al. Insulin resistance, subclinical left ventricular remodeling, and the obesity paradox: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2013;61(16):1698–706.
pubmed: 23500236 pmcid: 4114341 doi: 10.1016/j.jacc.2013.01.053
Yang CD, Shen Y, Lu L, Ding FH, Yang ZK, Zhang RY, et al. Insulin resistance and dysglycemia are associated with left ventricular remodeling after myocardial infarction in non-diabetic patients. Cardiovasc Diabetol. 2019;18(1):100.
pubmed: 31391045 pmcid: 6686425 doi: 10.1186/s12933-019-0904-3
Yang CD, Pan WQ, Feng S, Quan JW, Chen JW, Shu XY, et al. Insulin resistance is associated with heart failure with recovered ejection fraction in patients without diabetes. J Am Heart Assoc. 2022;11(19): e026184.
pubmed: 36129062 pmcid: 9673726 doi: 10.1161/JAHA.122.026184
Valensi P. Autonomic nervous system activity changes in patients with hypertension and overweight: role and therapeutic implications. Cardiovasc Diabetol. 2021;20(1):170.
pubmed: 34412646 pmcid: 8375121 doi: 10.1186/s12933-021-01356-w
Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122.
pubmed: 30170598 pmcid: 6119242 doi: 10.1186/s12933-018-0762-4
Yaribeygi H, Maleki M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Pathophysiology of physical inactivity-dependent insulin resistance: a theoretical mechanistic review emphasizing clinical evidence. J Diabetes Res. 2021;2021:7796727.
pubmed: 34660812 pmcid: 8516544 doi: 10.1155/2021/7796727
Bird SR, Hawley JA. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med. 2017;2(1): e000143.
pubmed: 28879026 pmcid: 5569266 doi: 10.1136/bmjsem-2016-000143
Cosson E, Chiheb S, Hamo-Tchatchouang E, Nguyen MT, Aout M, Banu I, et al. Use of clinical scores to detect dysglycaemia in overweight or obese women. Diabetes Metab. 2012;38(3):217–24.
pubmed: 22300975 doi: 10.1016/j.diabet.2011.11.007
Karve A, Hayward RA. Prevalence, diagnosis, and treatment of impaired fasting glucose and impaired glucose tolerance in nondiabetic U.S. adults. Diabetes Care. 2010;33(11):2355–9.
pubmed: 20724649 pmcid: 2963494 doi: 10.2337/dc09-1957
Lindström J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, et al. The finnish diabetes prevention study (DPS): lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care. 2003;26(12):3230–6.
pubmed: 14633807 doi: 10.2337/diacare.26.12.3230
Lindström J, Peltonen M, Eriksson JG, Ilanne-Parikka P, Aunola S, Keinänen-Kiukaanniemi S, et al. Improved lifestyle and decreased diabetes risk over 13 years: long-term follow-up of the randomised finnish diabetes prevention study (DPS). Diabetologia. 2013;56(2):284–93.
pubmed: 23093136 doi: 10.1007/s00125-012-2752-5
Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.
pubmed: 11333990 doi: 10.1056/NEJM200105033441801
Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and diabetes study. Diabetes Care. 1997;20(4):537–44.
pubmed: 9096977 doi: 10.2337/diacare.20.4.537
Gong Q, Zhang P, Wang J, Ma J, An Y, Chen Y, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing diabetes prevention outcome study. Lancet Diabetes Endocrinol. 2019;7(6):452–61.
pubmed: 31036503 pmcid: 8172050 doi: 10.1016/S2213-8587(19)30093-2
Qian X, Wang J, Gong Q, An Y, Feng X, He S, et al. Non-diabetes status after diagnosis of impaired glucose tolerance and risk of long-term death and vascular complications: a post hoc analysis of the Da Qing diabetes prevention outcome study. PLoS Med. 2024;21(7): e1004419.
pubmed: 38980837 pmcid: 11233008 doi: 10.1371/journal.pmed.1004419
Goldberg RB, Orchard TJ, Crandall JP, Boyko EJ, Budoff M, Dabelea D, et al. Effects of long-term metformin and lifestyle interventions on cardiovascular events in the diabetes prevention program and its outcome Study. Circulation. 2022;145(22):1632–41.
pubmed: 35603600 pmcid: 9179081 doi: 10.1161/CIRCULATIONAHA.121.056756
Liu Y, Guo H, Wang Q, Chen J, Xuan Y, Xu J, et al. Short-term effects of lifestyle intervention in the reversion to normoglycemia in people with prediabetes. Prim Care Diabetes. 2022;16(1):168–72.
pubmed: 34930688 doi: 10.1016/j.pcd.2021.12.009
Sandforth A, von Schwartzenberg RJ, Arreola EV, Hanson RL, Sancar G, Katzenstein S, et al. Mechanisms of weight loss-induced remission in people with prediabetes: a post-hoc analysis of the randomised, controlled, multicentre Prediabetes Lifestyle Intervention Study (PLIS). Lancet Diabetes Endocrinol. 2023;11(11):798–810.
pubmed: 37769677 doi: 10.1016/S2213-8587(23)00235-8
Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373(1):11–22.
pubmed: 26132939 doi: 10.1056/NEJMoa1411892
Borlaug BA, Kitzman DW, Davies MJ, Rasmussen S, Barros E, Butler J, et al. Semaglutide in HFpEF across obesity class and by body weight reduction: a prespecified analysis of the STEP-HFpEF trial. Nat Med. 2023;29(9):2358–65.
pubmed: 37635157 pmcid: 10504076 doi: 10.1038/s41591-023-02526-x
Kosiborod MN, Petrie MC, Borlaug BA, Butler J, Davies MJ, Hovingh GK, et al. Semaglutide in patients with obesity-related heart failure and type 2 diabetes. N Engl J Med. 2024;390(15):1394–407.
pubmed: 38587233 doi: 10.1056/NEJMoa2313917
Butler J, Shah SJ, Petrie MC, Borlaug BA, Abildstrøm SZ, Davies MJ, et al. Semaglutide versus placebo in people with obesity-related heart failure with preserved ejection fraction: a pooled analysis of the STEP-HFpEF and STEP-HFpEF DM randomised trials. Lancet. 2024;403(10437):1635–48.
pubmed: 38599221 pmcid: 11317105 doi: 10.1016/S0140-6736(24)00469-0
Lincoff AM, Brown-Frandsen K, Colhoun HM, Deanfield J, Emerson SS, Esbjerg S, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med. 2023;389(24):2221–32.
pubmed: 37952131 doi: 10.1056/NEJMoa2307563
Collins L, Costello RA. Glucagon-Like Peptide-1 Receptor Agonists. 2024. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
Semaglutide. Wegovy| European Medicines Agency (europa.eu). Accessed 14 June 2024.
Liraglutide recommended for approval in weight management. Saxenda recommended for approval in weight management in adults| European Medicines Agency (europa.eu). Accessed 14 June 2024.
Datta T, Lee AJ, Cain R, McCarey M, Whellan DJ. Weighing in on heart failure: the potential impact of bariatric surgery. Heart Fail Rev. 2022;27(3):755–66.
pubmed: 33495937 doi: 10.1007/s10741-021-10078-w
Mentias A, Desai MY, Aminian A, Patel KV, Keshvani N, Verma S, et al. Trends and outcomes associated with bariatric surgery and pharmacotherapies with weight loss effects among patients with heart failure and obesity. Circ Heart Fail. 2024;17(2): e010453.
pubmed: 38275114 doi: 10.1161/CIRCHEARTFAILURE.122.010453
Oyama K, Raz I, Cahn A, Kuder J, Murphy SA, Bhatt DL, et al. Obesity and effects of dapagliflozin on cardiovascular and renal outcomes in patients with type 2 diabetes mellitus in the DECLARE-TIMI 58 trial. Eur Heart J. 2022;43(31):2958–67.
pubmed: 34427295 doi: 10.1093/eurheartj/ehab530
Kenchaiah S, Pocock SJ, Wang D, Finn PV, Zornoff LA, Skali H, et al. Body mass index and prognosis in patients with chronic heart failure: insights from the Candesartan in Heart failure: assessment of reduction in mortality and morbidity (CHARM) program. Circulation. 2007;116(6):627–36.
pubmed: 17638930 doi: 10.1161/CIRCULATIONAHA.106.679779
Shah R, Gayat E, Januzzi JL Jr, Sato N, Cohen-Solal A, diSomma S, et al. Body mass index and mortality in acutely decompensated heart failure across the world: a global obesity paradox. J Am Coll Cardiol. 2014;63(8):778–85.
pubmed: 24315906 doi: 10.1016/j.jacc.2013.09.072
Sharma A, Lavie CJ, Borer JS, Vallakati A, Goel S, Lopez-Jimenez F, et al. Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am J Cardiol. 2015;115(10):1428–34.
pubmed: 25772740 doi: 10.1016/j.amjcard.2015.02.024
den Uijl I, van den Berg-Emons RJG, Sunamura M, Lenzen MJ, Stam HJ, Boersma E, et al. Effects of a dedicated cardiac rehabilitation program for patients with obesity on body weight, physical activity, sedentary behavior, and physical fitness: The OPTICARE XL randomized controlled trial. Phys Ther. 2023;103(9):pzad055.
doi: 10.1093/ptj/pzad055
Khadanga S, Barrett K, Sheahan KH, Savage PD. Novel therapeutics for type 2 diabetes, obesity, and heart failure: a review and practical recommendations for cardiac rehabilitation. J Cardiopulm Rehabil Prev. 2023;43(1):1–7.
pubmed: 36576423 pmcid: 9801223 doi: 10.1097/HCR.0000000000000761
Roussel R, Travert F, Pasquet B, Wilson PW, Smith SC Jr, Goto S, et al. Metformin use and mortality among patients with diabetes and atherothrombosis. Arch Intern Med. 2010;170(21):1892–9.
pubmed: 21098347 doi: 10.1001/archinternmed.2010.409
Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.
pubmed: 11832527 doi: 10.1056/NEJMoa012512
DeFronzo RA, Tripathy D, Schwenke DC, Banerji M, Bray GA, Buchanan TA, et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med. 2011;364(12):1104–15.
pubmed: 21428766 doi: 10.1056/NEJMoa1010949
Girardi ACC, Polidoro JZ, Castro PC, Pio-Abreu A, Noronha IL, Drager LF. Mechanisms of heart failure and chronic kidney disease protection by SGLT2 inhibitors in nondiabetic conditions. Am J Physiol Cell Physiol. 2024;327(3):C525–44.
pubmed: 38881421 doi: 10.1152/ajpcell.00143.2024
Marfella R, Scisciola L, D’Onofrio N, Maiello C, Trotta MC, Sardu C, et al. Sodium-glucose cotransporter-2 (SGLT2) expression in diabetic and non-diabetic failing human cardiomyocytes. Pharmacol Res. 2022;184: 106448.
pubmed: 36096423 doi: 10.1016/j.phrs.2022.106448
Jordan J, Tank J, Heusser K, Heise T, Wanner C, Heer M, et al. The effect of empagliflozin on muscle sympathetic nerve activity in patients with type II diabetes mellitus. J Am Soc Hypertens. 2017;11(9):604–12.
pubmed: 28757109 doi: 10.1016/j.jash.2017.07.005
Spallone V, Valensi P. SGLT2 inhibitors and the autonomic nervous system in diabetes: a promising challenge to better understand multiple target improvement. Diabetes Metab. 2021;47(4): 101224.
pubmed: 33454436 doi: 10.1016/j.diabet.2021.101224
Ussher JR, Drucker DJ. Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nat Rev Cardiol. 2023;20(7):463–74.
pubmed: 36977782 doi: 10.1038/s41569-023-00849-3
Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the american diabetes association (ADA) and the European association for the study of diabetes (EASD). Diabetes Care. 2022;45(11):2753–86.
pubmed: 36148880 pmcid: 10008140 doi: 10.2337/dci22-0034
Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J. 2023;44(39):4043–140.
pubmed: 37622663 doi: 10.1093/eurheartj/ehad192
Rezki A, Fysekidis M, Chiheb S, Vicaut E, Cosson E, Valensi P. Acute and long-term effects of saxagliptin on post-prandial glycemic response in obese patients with impaired glucose tolerance. Nutr Metab Cardiovasc Dis. 2021;31(4):1257–66.
pubmed: 33618922 doi: 10.1016/j.numecd.2020.12.025
Guerci B, Monnier L, Serusclat P, Petit C, Valensi P, Huet D, et al. Continuous glucose profiles with vildagliptin versus sitagliptin in add-on to metformin: results from the randomized Optima study. Diabetes Metab. 2012;38(4):359–66.
pubmed: 22809630 doi: 10.1016/j.diabet.2012.06.001
Nahon KJ, Doornink F, Straat ME, Botani K, Martinez-Tellez B, Abreu-Vieira G, et al. Effect of sitagliptin on energy metabolism and brown adipose tissue in overweight individuals with prediabetes: a randomised placebo-controlled trial. Diabetologia. 2018;61(11):2386–97.
pubmed: 30145664 pmcid: 6182651 doi: 10.1007/s00125-018-4716-x
Scirica BM, Braunwald E, Raz I, Cavender MA, Morrow DA, Jarolim P, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2014;130(18):1579–88.
pubmed: 25189213 doi: 10.1161/CIRCULATIONAHA.114.010389
ORIGIN Trial Investigators, Gerstein HC, Bosch J, Dagenais GR, Díaz R, Jung H, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–28.
doi: 10.1056/NEJMoa1203858
Gerstein HC, Jung H, Rydén L, Diaz R, Gilbert RE, Yusuf S, ORIGIN Investigators. Effect of basal insulin glargine on first and recurrent episodes of heart failure hospitalization: the ORIGIN trial (outcome reduction with initial glargine intervention). Circulation. 2018;137(1):88–90.
pubmed: 29279340 doi: 10.1161/CIRCULATIONAHA.117.030924
Valensi P, Schwarz EH, Hall M, Felton AM, Maldonato A, Mathieu C. Pre-diabetes essential action: a European perspective. Diabetes Metab. 2005;31(6):606–20.
pubmed: 16357812 doi: 10.1016/S1262-3636(07)70239-2
Scheen AJ. Prevention of type 2 diabetes mellitus through inhibition of the Renin-Angiotensin system. Drugs. 2004;64(22):2537–65.
pubmed: 15516153 doi: 10.2165/00003495-200464220-00004
Scheen AJ. Etude clinique du mois. L’étude DREAM: prévention du diabète de type 2 par le ramipiril et/ou la rosiglitazone chez les personnes dysglycémiques sans maladie cardio-vasculaire [DREAM study: prevention of type 2 diabetes with ramipril and/or rosiglitazone in persons with dysglycaemia but no cardiovascular desease]. Rev Med Liege. 2006;61(10):728–32.
pubmed: 17209507
Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735–42.
pubmed: 20167359 doi: 10.1016/S0140-6736(09)61965-6
Thakker D, Nair S, Pagada A, Jamdade V, Malik A. Statin use and the risk of developing diabetes: a network meta-analysis. Pharmacoepidemiol Drug Saf. 2016;25(10):1131–49.
pubmed: 27277934 doi: 10.1002/pds.4020
Sattar NA, Ginsberg H, Ray K, Chapman MJ, Arca M, Averna M, et al. The use of statins in people at risk of developing diabetes mellitus: evidence and guidance for clinical practice. Atheroscler Suppl. 2014;15(1):1–15.
pubmed: 24840509 doi: 10.1016/j.atherosclerosissup.2014.04.001
Valensi P, Picard S, Pathak A. Type 2 diabetes: why should diabetologists and cardiologists work more closely together? Diabetes Metab. 2019;45(6):501–4.
pubmed: 31394190 doi: 10.1016/j.diabet.2019.07.007

Auteurs

Paul Valensi (P)

Polyclinique d'Aubervilliers, Aubervilliers and Paris Nord University, Bobigny, France. paul.valensi@noos.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH