AmpClass: an Antimicrobial Peptide Predictor Based on Supervised Machine Learning.


Journal

Anais da Academia Brasileira de Ciencias
ISSN: 1678-2690
Titre abrégé: An Acad Bras Cienc
Pays: Brazil
ID NLM: 7503280

Informations de publication

Date de publication:
2024
Historique:
received: 04 07 2023
accepted: 07 04 2024
medline: 9 10 2024
pubmed: 9 10 2024
entrez: 9 10 2024
Statut: epublish

Résumé

In the last decades, antibiotic resistance has been considered a severe problem worldwide. Antimicrobial peptides (AMPs) are molecules that have shown potential for the development of new drugs against antibiotic-resistant bacteria. Nowadays, medicinal drug researchers use supervised learning methods to screen new peptides with antimicrobial potency to save time and resources. In this work, we consolidate a database with 15945 AMPs and 12535 non-AMPs taken as the base to train a pool of supervised learning models to recognize peptides with antimicrobial activity. Results show that the proposed tool (AmpClass) outperforms classical state-of-the-art prediction models and achieves similar results compared with deep learning models.

Identifiants

pubmed: 39383429
pii: S0001-37652024000601703
doi: 10.1590/0001-3765202420230756
pii:
doi:

Substances chimiques

Antimicrobial Peptides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e20230756

Auteurs

Carlos Mera-Banguero (C)

Instituto Tecnológico Metropolitano, Departamento de Sistemas de Información, Facultad de Ingeniería, Calle 54A # 30-01, 050013, Medellín, Antioquia, Colombia.
Universidad de Antioquia, Departamento de Ingeniería de Sistemas, Facultad de Ingenierías, Calle 67 # 53 - 108, 050010, Medellín, Antioquia, Colombia.

Sergio Orduz (S)

Universidad Nacional de Colombia, sede Medellín, Departamento de Biociencias, Facultad de Ciencias, Carrera 65 # 59A - 110, 050034, Medellín, Antioquia, Colombia.

Pablo Cardona (P)

Universidad Nacional de Colombia, sede Medellín, Departamento de Biociencias, Facultad de Ciencias, Carrera 65 # 59A - 110, 050034, Medellín, Antioquia, Colombia.

Andrés Orrego (A)

Universidad Nacional de Colombia, sede Medellín, Departamento de Ciencias de la Computación y de la Decisión, Facultad de Minas, Av. 80 # 65 - 223, 050041, Medellín, Antioquia, Colombia.

Jorge Muñoz-Pérez (J)

Universidad Nacional de Colombia, sede Medellín, Departamento de Biociencias, Facultad de Ciencias, Carrera 65 # 59A - 110, 050034, Medellín, Antioquia, Colombia.

John W Branch-Bedoya (JW)

Universidad Nacional de Colombia, sede Medellín, Departamento de Ciencias de la Computación y de la Decisión, Facultad de Minas, Av. 80 # 65 - 223, 050041, Medellín, Antioquia, Colombia.

Articles similaires

Animals Drug Resistance, Multiple, Bacterial Mice Microbial Sensitivity Tests Female
Bacteriocins Humans Anti-Bacterial Agents Bacteria Bacterial Infections
Methicillin-Resistant Staphylococcus aureus Aegle Microbial Sensitivity Tests Molecular Dynamics Simulation Antimicrobial Peptides
Supervised Machine Learning Humans Image Processing, Computer-Assisted Diagnostic Imaging

Classifications MeSH